AIR HANDLING UNIT

GIL Tajhiz Tahvieh Company / Rasht - Iran

Features

In all Azar Nasim air handling units the frames are made from aluminum profiles while the chassis and body panels are made from galvanized steel sheets in appropriate thicknesses. Azar Nasim air handling units are manufactured in some features of which are offered below. All units are completely painted in the proper thickness.

1. Fan section:

In this section double width-double inlet centrifugal fans with forward curved blades are normally used for low pressure downfall requirements as opposed to fans with backward curved blades which are for high pressure downfall applications. Fans and housings are made of galvanized steel each set offaplus other related components such as shafts are statically and dynamically balanced, shafts are selected from proper material and size.Other power transmission components such as pulleys and belts are also suitably chosen depending on the required fan speed and electric motor power. Fan(s) and the corresponding electric motor(s) are installed on an independent chassis which is itself installed on the main chassis using vibration dampers in order to eliminate transfer of vibrations to the structure. To further reduction the effects of vibrations, fan outlet (s) are also connected to the structure via flexible material such as canvas. Where an air washer section is included, the blower electric motor is installed outside of this section to prevent adverse effects of moisture. In other cases, blower electric motor is installed in the fan section. All $380 \mathrm{~V} / 30 / 50 \mathrm{hz}$ electricmotors are selected with insulation class of (f) and
ingress protection of (ip -54). Electricmotors with ingress protection of (ip-55) are also available upon request.
2. Coil section:

This section may include cooling and heating coils or either one of the two depending on the Requirement.
Cooling coils are available in two types of chilled water and direct expansion (D.X.) As per client's requirements. The chilled water coils are constructed of 5/8"0.D copper tubes plate finned ($8,10,12$ or 14 fpi) in aluminum or copper upon request. The DX Coils are constructed of $3 / 8^{\prime \prime}$ OD copper tubes also plate finned (10,12 or 14 fpi) in aluminum or copper as required. The chilled water for cooling coils is to be supplied by a water chiller and in the D.X. coils cooling is provided through the use of refrigerant such as R-22, R-407c or R-134a.
Chilled water coils may be requested in 4 , 6 \& 8 rows and as to the D.X. coils; they are available in 4 or 6 rows configurations. Heating coils are available in two types of hot water and steam. The hot water coil just like chilled water coil is offered in $1,2,3$ \& 4 -row configurations. Steam heating coils are constructed of $1 / 2^{\prime \prime}$ seamless steel pipe spiral finned in aluminum or copper. Coils in $1 \& 2$-row configurations are available upon request.
3. Mixing box section:

This section is where the fresh and return air streams are mixed. An independent air damper is included for each air stream.
Dampers are manufactured from aluminum in opposed blade configuration and air sealed through the use of rubber strip gasket.

Damper actuators maybe easily installed when required. 2 inches Washable aluminum filter modules are arranged in (V) type configuration inside these boxes. Housing for pleated type air filters may also be considered in the mixing box.
4. Special filter section:

This section may include pleated or bag filter which are installed as per customer requirements. Efficiency and class of special filters are specified by the client.

Notes:

- Allowable air velocity must be over the special filter section.
- In cases where only pleated filters are required they are easily installed in themixing box and not in the special filter section.

5. Multi-Zone Section:

In some cases the air conditioning design of a building defines different zones to be air conditioned, each zone requiring its own air flow rate and air temperature. In these cases instead of using a few air handling units, a multi -zone unit is usually installed. Inthemulti-zone air handling unit, cooling and the heating coils are paralleled with each other which means that some of the air passes over the cooling coil and the remainder passes over the heating coil and at the outlet the result is a mixture of the two which has the suitable temperature for each zone. Inmulti-zone units the cooling coil area is the same size as that of a regular air handling unit while the size of the heating coil is less. For each zone two outlet dampers
are installed one which is on the cooling coil side and one that is on the heating coil side active. When outlet damper is open, the other one is close. The same amount, therefore, by adjusting the outlet dampers for each zone, the desired zone temperature is controlled. Number and the effective area of dampers for each zone are dependent on the number of zones and the air flow rate needed for that zone. These aluminum dampers are located either on top or the blank side of this section depending on the type of air handling unit is up blast or horizont al blast discharge. Multizone section is usually installed after the fan section and in order to have the proper air flow over the coils air diffuser is also installed. Humidifiers are also installed in this section when required.

Selection procedure

The first parameter to consider in the selection of an air handling unit is the required air flow rate (CFM) therefore, by having the required air flow rate, coil face area and the available nominal air flow rate for the unit, the appropriate model may be chosen. Notes:
Allowable air velocity over cooling coils is less than 550FPM.In air handling units equipped with air Washers this allowable airvelocity shall be reduced further to less than 500 FPM.
Considering the cooling and heating loads and the entering air conditions. The number of coil rows, pressure drops on both water and air sides and the required model of fan may be determined using the data available in the catalogue. Other components and accessories such as air mixing box, special filters, humidifier, etc. May also be selected from the ccatalogue as needed.

Chilled water Cooling, Hot water Heating Given:
Required air flow rate $=10000$ CFM
Cooling entering air condition $=80 \mathrm{FDB}, 67 \mathrm{FWB}$
Heating entering air condition $=60 \mathrm{FDB}$
Entering chilled water temp. $=45 \mathrm{~F}$ Leaving chilled water temp. $=55 \mathrm{~F}$ Entering hot water temp. $=180$
F Leaving hot water temp. $=160 \mathrm{~F}$ Total cooling load $=480 \mathrm{MBH}$
Total heating load $=700 \mathrm{MBH}$ Cooling $\&$ heating coil FPI = 14
External static pressure drop. $=0.78 \mathrm{In}$ W. G Maximum coil face velocity $=500$ FPM
Filter arrangement = V - type
Considering the required airflow rateincfm and the uninominal airflow rate, model
AHU-1000 is chosen. From table 5a the given cooling capacity and the chilled water temp. A 6-Rows coil are chosen. (Cooling capacity of the unit is 498 MBH) From table 7a the given heating capacity and the hot water temp. A
2 - Rows coil are chosen. (Heating capacity of the unit is 726 MBH).
Note: Incases where there rquirement for number of fin per inchis not specified, a coil with the least number Of rows with $8,10,12$ or 14 FPI which fulfills the requirement is chosen.

Preference is usually given to 14 FPI .

- Determine the actual coil face velocity.
F.V. Actual $=\frac{\text { CFM }}{\text { F.A }}=\frac{10000}{20}=\mathbf{5 0 0}$ F.P.M
- Knowing the actual coil velocity and the coils chosen, determine the total internal air side pressure downfall for the unit. From the table
P.D. Cooling coil $=$ P. D. (Table 17) \times C.F. (T able
$10 \mathrm{~A})=0.85 * 1.45=1.19 \ln$ W.G
P.D. Heating coil $=$ P. D. $($ Table 17 $) \times$ C.F.
$($ Table 10A $)=0.22 * 1.45=0.32 \ln \mathrm{~W} . \mathrm{G}$
P.D. Filter $=0.099 \ln$ W.G
P.D. Accessories $=0.05+0.06=0.11 \mathrm{In}$ W.G
(damper \& mixing box from table 18).
Total internal pressure drop (T. I.P .D)
Tot al external pressure drop (T.E.P .D)
T.I.P .D = P.D. Cooling coil + P.D. Heating c o il + P.D. Filter + P.D. aaccessories
T.I.P $. D=1.19+0.32+0.099+0.11=1.719 \ln$ W.G Total static pressure (T.S.P)= T.I.P .D + T.E.P .D = $1.719+0.78=2.5 \ln \mathrm{~W} . \mathrm{G}$
Therefore, by using table 1 and performing interpolation the required fan size is determined as 22 " at the speed of 703 RPM and electric motor power requi rement of 10 HP .
- Determine the water side P.D. (Cooling Coil):

Water flow rate (GPM) $=\frac{\text { Total heating load }}{500 \times \Delta T}=\frac{498000}{500 \times 10}=$
$\rightarrow=99.6 \mathrm{GM}$
Water velocity inside the tubes =
$\rightarrow \frac{\text { Water Flow Rate (GPM) }}{\text { No. of coils } \times \text { No. of circuits (Table 19) }}=1.235=$

$$
\rightarrow \frac{99.6}{1 \times 28}=\times 1.235=4.39 \mathrm{Ft} / \mathrm{Sec}
$$

- From table 21 consideringthe 6 rows cooling coil, the water velocity of $4.39 \mathrm{Ft} / \mathrm{Sec}$ the pressure drop is given as 10.52 Ft . W.G.
-Determine the water side pressure drop (Heating Coil):

Water flow rate (GPM) $=\frac{\text { Total heating load }}{500 \times \Delta T}=\frac{726000}{500 \times 10}=$
$\rightarrow=72.6$ GM
Water velocity inside the tubes =
$\rightarrow \frac{\text { Water Flow Rate (GPM) }}{\text { No. of coils } \times \text { No. of circuits (Table 19) }}=1.235=$

From Table 21 considering the 2 row heating coil, the water velocity of $3.2 \mathrm{Ft} / \mathrm{Sec}$, the pressure drop is given $2.62 \mathrm{Ft} w . g$ and a. The average water temp, of 170 F correction factor is 0.77 theref ore, the actual P.D. is 2.02 Ft W.G.

D.X. COOLING, STEAM HEATING Given:

Required air flow rate $=9500$ CFM
Cooling entering air condition $=80^{\circ} \mathrm{FDB}, 67^{\circ} \mathrm{FWB}$
Heating entering air condition $=60^{\circ} \mathrm{FDB}$
Total cooling load $=450 \mathrm{MBH}$
Total heating load $=950$ MBH
Cooling coil FPI = 14
Heating coil FPI = 8
Evaporating temperature $=45^{\circ} \mathrm{F}$
Steam pressure $=5 \mathrm{psig}$
External static pressure downfall. $=0.5 \mathrm{in}$. WG
Maximum coil face velocity $=500$ FPM
Filter arrangement = flat type
Considering the required air flow rate in cfm and the unit available nominal air flow rate, air handling unit model AHU- 1000 is chosen.

- Fromtable 9民 the givenwilling capacity and the evap. temp. a 6-rows chosen (willingcapacity of the units is 471 MBH)
- Fromtable 8Qthe given heating capacity and the steampressure of 5psig, a 2-rows heating coil is chosen.
(Heating capacity of the unit is 980 MBH)

Determine the actual coil face velocity.
Actual F.V. $=\frac{C F M}{\text { F.A }}=\frac{9500}{20}=475$ F.P.M
Referring to the correction factors in table 12, the cooling and the heating capacity correction factors are given as 0.97 And 0.98 Respectively.

- Corrected cooling capacity = $471 \times 0.97=456.8 \mathrm{MBH}$
- Corrected heating capacity= $980 \times 0.98=960.4 \mathrm{MBH}$

Therefore, the chosen cooling and heating coils fulfill the requirements.

- Knowing the actual coil face velocity and the coils chosen, determine the total internal air side pressure drop for the unit.
P.D. DX coil $=$ P.D. (Table 17) \times C.F. (Table 17A) $=\rightarrow$ $\rightarrow 0.79 \times 1.45=1.15$ in W.G
P.D. Heating coil $=$ P.D. (Table 17) \times C.F. \rightarrow $\rightarrow($ Table 10 A$)=0.21 \times 1=0.21$ in W.G
P.D. Filter $=0.09$ in W.G (table 9)
P.D. Accessories $=0.05$ in W.G (Table 18) \rightarrow
\rightarrow Total internal pressure d downfall. (T. I.P .D) \rightarrow
\rightarrow Tot al external pressure downfall (T.E.P.D)
T.I.P.D = P.D. DX Coil + P.D. Heating coil $+\rightarrow$
\rightarrow P. D. Filter accessories $=\rightarrow$
$\rightarrow 1.15+0.2+0.09+0.05=1.5$ in W.G

Total static pressure(T .S.P) = T.I.P .D + T.E.P .D \rightarrow $\rightarrow=1.5+0.5=2$ in W.G

Therefore, by using table18 and performing interpolation the required fan size is determined as22" At the speed of 629 RPM and electric motor power requirement of 7.5 HP .

Table 1																
Model	Fan Size	Coil Face area sq.ft²	FPM	CFM	Total static pressure in inches of water											
					$0.5^{\prime \prime}$		0.75 ${ }^{\text {² }}$		1"		1.25"		1.51		211	
					RPM	HP										
AHU 250	1×14	5	400	2000	515	0.5	614	0.5	702	0.75	-	-	-	-	-	-
			450	2250	536	0.5	623	0.75	709	0.75	-	-	-	-	-	-
			500	2500	561	0.5	639	0.75	714	0.75	784	1	865	1.5	-	-
			550	2750	583	0.75	654	0.75	726	1	793	1.5	868	1.5	-	-
			600	3000	609	0.75	677	1	742	1	806	1.5	872	1.5	998	2
			700	3500	662	1	726	1.5	783	1.5	842	1.5	896	2	1005	3
			800	4000	717	1.5	780	1.5	837	2	886	2	933	3	1030	3
AHU 350	$1 \times 16^{\prime \prime}$	7	400	2800	478	0.5	554	0.75	632	1	708	1.5	785	1.5		
			450	3150	501	0.75	570	1	637	1.5	707	1.5	777	1.5	908	3
			500	3500	526	1	589	1	650	1.5	711	1.5	774	2	898	3
			550	3850	553	1	613	1.5	668	1.5	723	2	780	2	892	3
			600	4200	580	1.5	639	1.5	691	2	742	2	791	3	893	4
			700	4900	-	-	691	2	741	3	786	3	830	3	617	4
			800	5600	-	-	746	3	794	3	837	4	878	4	955	4
AHU 500	$1 \times 17^{\prime \prime}$	10	400	4000	454	1	515	1	571	1.5	631	1.5	692	2	803	3
			450	4500	478	1.5	539	1.5	592	1.5	641	2	693	2	798	3
			500	5000	535	1.5	566	1.5	610	2	656	3	702	3	798	4
			550	5500	541	1.5	591	2	636	3	682	3	722	3	803	4
			600	6000	-	-	621	2	665	3	732	4	723	3	818	4
			700	7000	-	-	677	3	721	4	757	4	796	5.5	858	5.5
			800	8000	-	-	-	-	778	5.5	818	5.5	848	5.5	914	5.5
AHU 700	$1 \times 19^{\prime \prime}$	15	400	6000	414	1.5	474	1.5	530	2	543	3	648	3	748	4
			450	6750	436	1.5	491	2	542	3	593	3	645	3	750	4
			500	7500	-	-	512	3	560	3	605	3	651	4	755	5.5
			550	8200	-	-	533	3	580	4	621	4	664	4	757	5.5
			600	9000	-	-	557	4	601	4	642	4	681	5.5	757	5.5
			700	10500	-	-	-	-	646	5.5	684	5.5	722	7.5	791	7.5
			800	12000	-	-	-	-	-	-	729	7.5	763	10	888	10
AHU 1000	1×22 "	20	400	8000	353	2	401	3	448	3	497	4	545	4	627	5.5
			450	9000	373	3	418	3	459	4	502	4	548	5.5	630	7.5
			500	10000	395	3	436	4	475	4	513	5.5	551	5.5	638	7.5
			550	11000	417	4	457	4	493	5.5	528	5.5	563	7.5	640	7.5
			600	12000	-	-	478	5.5	512	5.5	546	7.5	577	7.5	641	10
			700	14000	-	-	525	7.5	554	7.5	585	10	614	10	669	15
			800	16000	-	-	-	-	601	15	628	15	655	15	705	15
AHU 1200	$1 \times 22^{\prime \prime}$	25	400	10000	318	3	357	3	394	4	443	4	482	5.5	563	7.5
			450	11250	339	3	373	4	405	4	450	5.5	484	5.5	555	7.5
			500	12500	358	4	391	5.5	422	5.5	483	5.5	493	7.5	554	10
			550	13750	380	5.5	428	5.5	440	7.5	478	7.5	500	7.5	560	10
			600	15000	386	5.5	432	7.5	459	7.5	496	10	522	10	572	15
			700	17500	-	-	474	10	499	10	533	15	554	15	600	15
			800	20000	-	-	-	-	542	15	574	15	596	20	636	20
AHU 1500	$1 \times 26^{\prime \prime}$	30	400	12000	326	3	362	4	396	4	430	5.5	464	5.5	536	7.5
			450	13500	349	4	382	5.5	413	5.5	444	7.5	474	7.5	538	10
			500	15000	373	5.5	404	5.5	434	7.5	461	7.5	488	7.5	542	10
			550	16500	-	-	427	7.5	454	7.5	481	10	506	10	555	15
			600	18000	-	-	458	10	477	10	502	10	526	15	571	15
			700	21000	-	-	-	-	524	15	547	15	569	15	610	20
AHU 1700	$1 \times 26^{\prime \prime}$	35	400	14000	294	4	327	4	358	5.5	389	5.5	422	7.5	489	10
			450	15750	314	5.5	344	5.5	372	7.5	400	7.5	428	7.5	484	10
			500	17500	335	5.5	363	7.5	389	7.5	414	10	439	10	490	15
			550	19250	352	7.5	382	10	405	10	431	10	453	15	500	15
			600	21000	-	-	413	10	425	15	448	15	470	15	512	15
			700	24500	-	-	425	15	466	15	486	20	506	20	534	20

Cont-Table 1																
Model	Fan Size	Coil Face area sq.ft²	FPM	CFM	Total static pressure in inches of water											
					[0.5"		0.75 ${ }^{\text {¹ }}$		111		1.251		1.5¹		2"	
					RPM	HP										
AHU 2000	1×29	40	400	16000	306	5.5	336	5.5	364	7.5	391	7.5	419	10	475	10
			450	18000	329	5.5	357	7.5	383	7.5	408	10	432	10	482	15
			500	20000	-	-	379	10	403	10	427	15	449	15	494	15
			550	22000	-	-	403	15	425	15	447	15	469	15	509	20
			600	24000	-	-	-	-	448	15	469	15	489	20	537	20
			700	28000	-	-	-	-	-	-	514	25	533	25	567	30
AHU 2200	1×29	45	400	18000	260	5.5	289	5.5	317	7.5	344	10	371	10	429	15
			450	20250	278	5.5	305	7.5	330	7.5	354	10	379	10	428	15
			500	22500	296	5.5	322	10	345	10	361	15	390	15	433	15
			550	24750	302	7.5	340	10	363	15	383	15	403	15	443	20
			600	27000	-	-	359	15	381	15	400	15	419	20	456	20
			700	31500	-	-	-	-	415	20	436	25	453	25	486	30
			800	36000	-	-	-	-	-	-	-	-	-	-	-	-
AHU 2500	2×22 "	50	400	20000	401	2×3	442	2×4	480	2×4	517	2×5.5	554	2×5.5	629	2×7.5
			450	22500	459	2×3	468	2×5.5	504	2×5.5	538	2×5.5	571	2×7.5	637	2×10
			500	25000	-	-	497	2×5.5	530	2×7.5	562	2×7.5	592	2×7.5	651	2×10
			550	27500	-	-	528	2×7.5	557	2×10	587	2×10	616	2×10	672	2×15
			600	30000	-	-	-	-	587	2×10	615	2×10	642	2×15	694	2×15
			700	35000	-	-	-	-	-	-	675	2×15	698	2×20	746	2×20
			800	40000	-	-	-	-	-	-	-	-	-	-	802	2×25
AHU 3000	$2 \times 26^{\prime \prime}$	60	400	24000	326	2×3	362	2×4	396	2×4	430	2×5.5	464	2×5.5	536	2×7.5
			450	27000	349	2×4	382	2×5.5	413	2×5.5	444	2×7.5	474	2×7.5	535	2×10
			500	30000	373	2×5.5	404	2×5.5	434	2×7.5	461	2×7.5	488	2×7.5	542	2×10
			550	33000	-	-	427	2×7.5	454	2×7.5	481	2×10	506	2×10	555	2×15
			600	36000	-	-	458	2×10	477	2×10	502	2×10	526	2×15	571	2×15
			700	42000	-	-	-	-	524	2×15	547	2×15	569	2×15	610	2×20
AHU 3500	$2 \times 29^{\prime \prime}$	70	400	28000	284	2×4	317	2×4	348	2×5.5	379	2×5.5	412	2×7.5	479	2×10
			450	31500	304	2×5.5	334	2×5.5	362	2×7.5	390	2×7.5	418	2×7.5	474	2×10
			500	35000	325	2×5.5	353	2×7.5	379	2×7.5	404	2×10	429	2×10	480	2×15
			550	38500	342	2×7.5	371	2×10	397	2×10	421	2×10	443	2×15	489	2×15
			600	42000	-	-	393	2×10	415	2×15	438	2×15	460	2×15	502	2×15
			700	49000	-	-	415	2×15	456	2×15	476	2×20	496	2×20	534	
AHU 4000	2×29 "	80	400	32000	306	2×5.5	336	2×5.5	364	2×7.5	391	2×7.5	419	2×10	475	2×10
			450	36000	329	2×5.5	357	2×7.5	383	2×7.5	408	2×10	432	2×10	482	2×15
			500	40000	-	-	379	2×10	403	2×10	427	2×15	449	2×15	494	2×15
			550	44000	-	-	403	2×15	425	2×15	447	2×15	469	2×15	509	2×20
			600	48000	-	-	-	-	448	2×15	469	2×15	489	2×20	537	2×20
			700	56000	-	-	-	-	-	-	514	2×25	533	2×25	567	2×30
AHU 4500	2×32 "	88	400	35200	260	2×5.5	289	2×5.5	317	2×7.5	344	2×10	371	2×10	429	2×15
			450	39600	278	2×5.5	305	2×7.5	330	2×7.5	354	2×10	379	2×10	428	2×15
			500	44000	296	2×5.5	322	2×10	345	2×10	361	2×15	390	2×15	433	2×15
			550	48400	302	2×7.5	340	2×10	363	2×15	383	2×15	403	2×15	443	2×20
			600	52800	-	-	359	2×15	381	2×15	400	2×10	419	2×20	456	2×20
			700	61600	-	-	-	-	415	2×20	436	2×10	453	2×25	486	2×30

Note: Selections in shaded areas not recommended for cooling applications.

Cont. Table 1																
Model	Fan Size	Coil Face area sq.ft²	FPM	CFM	Total static pressure in inches of water											
					2.5 "		3"		3.51		$4^{\text {¹ }}$		511		6^{11}	
					RPM	HP										
AHU 250	1×14	5	$\begin{aligned} & 450 \\ & 500 \\ & 550 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \\ & 2750 \end{aligned}$	$\begin{aligned} & 1334 \\ & 1323 \\ & 1313 \end{aligned}$	3 3 3	- 1465 1449	- 3 3	- - 1578	- - 4	-	-	-	-	-	-
			600	3000	1317	3	1440	3	1564	4	1577	5.5	-	-	-	-
			700	3500	1349	4	1452	4	1555	4	1661	5.5	-	-	-	-
			800	4000	1409	4	1499	5.5	1586	5.5	1679	5.5	-	-	-	-
AHU 350	$1 \times 16^{\prime \prime}$	7	400	2800	-	-	-	-	-	-	-	-	-	-	-	-
			450	3150	-	-	-	-				-			-	-
			500	3500	1118	3	-	-	-	-	-	-	-	-	-	-
			550	3850	1124	4	1223	4	-	-	-	-	-	-	-	-
			600	4200	1136	4	1230	4	1230	5.5	-	-	-	-	-	-
			700	4900	1184	5.5	1263	5.5	1340	7.5	1420	7.5	1578	10	-	-
			800	5600	1247	5.5	1316	7.5	1384	7.5	1452	7.5	1590	10	-	-
AHU 500	$1 \times 17{ }^{\prime \prime}$	10	400	4000	980	4	-	-	-	-	-	-	-	-	-	-
			450	4500	978	4	1073	5.5	1168	5.5	1252	7.5	-	-	-	-
			500	5000	986	4	1071	5.5	1156	5.5	1242	7.5	-	-	-	-
			550	5500	1005	5.5	1081	5.5	1157	7.5	1235	7.5	1389	10	-	-
			600	6000	1031	5.5	1100	7.5	1169	7.5	1239	10	1383	10	-	-
			700	7000	1095	7.5	1155	10	1214	10	1237	10	1391	15	-	-
			800	8000	1168	10	1222	10	1277	15	1328	15	-	-	-	-
AHU 700	$1 \times 19^{\prime \prime}$	15	400	6000	860	5.5	947	7.5	-	-	-	-	-	-	-	-
			450	6750	850	5.5	940	7.5	1020	10	-	-	-	-	-	-
			500	7500	840	7.5	930	7.5	1012	10	1089	10	-	-	-	-
			550	8200	833	7.5	920	7.5	1003	10	1081	15	-	-	-	-
			600	9000	834	7.5	913	10	993	10	1070	15	1211	15	-	-
			700	10500	853	10	919	10	986	15	1054	15	1190	20	-	-
			800	12000	889	15	945	15	1002	15	1060	15	1178	20	-	-
AHU 1000	1×22 "	20	400	8000		-	-	-	-	-	-	-	-	-	-	-
			450	9000	711	7.5	-	-	-	-	-	-	-	-	-	-
			500	10000	704	10	778	10	-	-	-	-	-	-	-	-
			550	11000	701	10	771	15	839	15	-	-	-	-	-	-
			600	12000	704	10	768	15	832	15	886	20			-	-
						15			836	20	895	20	996	25	-	-
AHU 1200	1×22 "	25	400	10000	639	7.5	-	-	-	-	-	-	-	-	-	-
			450	11250	628	10	685	10	-	-	-	-	-	-	-	-
			500	12500	620	15	682	15	739	15	-	-	-	-	-	-
			550	13750	618	15	675	15	734	20	788	20	-	-	-	-
			600	15000	622	15	674	15	727	20	781	25	867	30	955	30
			700	17500	644	20	687	20	730	20	775	25	868	35	945	40
AHU 1500	$1 \times 26^{\prime \prime}$	30	400	12000	608	10	-	-	-	-	-	-				
			450	13500	599	10	662	15	-	-	-	-	-	-	-	-
			500	15000	597	15	654	15	713	20	-	-	-	-	-	-
			550	16500	604	15	655	15	707	20	759	20	-	-	-	-
			600	18000	617	15	662	20	708	20	754	25	851	30	-	-
			700	21000	649	20	688	25	727	25	766	30	846	35	927	40
AHU 1700	$1 \times 26^{\prime \prime}$	35	400	14000	563	15	-	-	-	-	-	-	-	-		
			450	15750	553	15	614	15	658	20	-	-	-	-	-	-
			500	17500	551	15	605	20	655	20	697	25	-	-		-
			550	19250	555	20	702	20	650	25	695	25	719	35	-	-
			600	21000	564	20	604	20	648	25	692	30	778	35	850	50
			700	24500	590	25	625	25	661	30	697	35	770	40	845	50

Cont. Table 1																
Model	$\begin{aligned} & \text { Fan } \\ & \text { Size } \end{aligned}$	Coil Face area sq.ft²	FPM	CFM	Total static pressure in inches of water											
					2.5 "		3"		3.511		41		$5{ }^{111}$		61	
					RPM	HP										
AHU 2000	$1 \times 29^{\prime \prime}$	40	400	16000	532	15	594	15	-	-	-	-	-	-	-	-
			450	18000	534	15	584	20	634	20	-	-	-	-	-	
			500	20000	538	20	582	20	629	25	674	25	-	-	-	-
			550	22000	549	20	589	25	630	25	6752	30	756	40	-	-
			600	24000	564	25	601	25	638	30	675	30	751	40	827	50
			700	28000	601	30	633	25	664	35	696	40	758	50	823	60
AHU 2200	$1 \times 29^{\prime \prime}$	45	400	18000	485	15	534	20	-	-	-	-	-	-	-	-
			450	20250	479	20	529	20	575	25	-	-	-	-	-	-
			500	22500	478	20	524	25	570	25	613	30	-	-	-	-
			550	24750	483	20	523	25	565	30	608	30	-	-	-	-
			600	27000	492	25	528	30	565	30	604	35	680	50	-	-
			700	31500	518	30	549	35	580	40	611	40	675	50	-	-
			800	36000	-	-	-	-	-	-	-	-	-	-	742	60
AHU 2500	$2 \times 22^{\prime \prime}$	50	400	20000	703	2×10	776	2×10	-	-	-	-	-	-	-	-
			450	22500	703	2×10	769	2×15	835	2×15	899	2×15	-	-	-	-
			500	25000	710	2×15	770	2×15	830	2×15	890	2×20	-	-	-	-
			550	27500	725	2×15	778	2×15	833	2×20	886	2×20	995	2×25	-	-
			600	30000	744	2×15	794	2×20	742	2×20	891	2×20	992	2×25	1091	2×30
			700	35000	791	2×20	834	2×25	876	2×25	918	2×25	1002	2×30	1087	2×35
			-	40000	-	-	-	-	-	-	-	-	-	-	-	-
AHU 3000	$2 \times 26^{\prime \prime}$	60	400	24000	608	2×10	-	-	-	-	-	-	-		-	
			450	27000	599	2×10	662	2×15	-	-	-	-	-	-	-	-
			500	30000	597	2×15	654	2×15	713	2×20	-	-	-	-	-	-
			550	33000	604	2×15	655	2×15	707	2×20	759	2×20	-	-	-	-
			600	36000	617	2×15	662	2×20	708	2×20	754	2×25	851	2×30		
			700	42000	649	2×20	688	2×25	727	2×25	766	2×30	846	2×35	927	2×40
AHU 3500	$2 \times 29^{\prime \prime}$	70	400	28000	543	2×15	-	-	-	-	-	-	-	-	-	-
			450	31500	533	2×15	594	2×15	638	2×20	-	-	-	-	-	-
			500	35000	531	2×15	585	2×20	635	2×20	677	2×25	-	-	-	-
			550	38500	535	2×20	681	2×20	630	2×25	675	2×25	759	2×35	-	-
			600	42000	544	2×20	584	2×20	628	2×25	672	2×30	758	2×35	830	2×50
			700	49000	570	2×25	605	2×25	641	2×30	677	2×35	750	2×40	825	2×50
AHU 4000	$2 \times 29^{\prime \prime}$	80	400	32000	534	2×15	794		-	-	-	-	-	-	-	-
			450	36000	532	2×15	784	2×20	634	2×20	-	-	-	-	-	-
			500	40000	538	2×20	582	2×20	629	2×25	674	2×25	-	-	-	-
			550	44000	549	2×20	589	2×25	630	2×25	672	2×30	756	2×35	-	-
			600	48000	564	2×25	601	2×25	638	2×30	675	2×30	751	2×40	827	2×50
			700	56000	601	2×30	633	2×30	664	2×35	696	2×40	758	2×45	823	2×60
AHU 4500	2×32	88	400	35200	485	2×15	534	2×20	-	-	-	-	-	-	-	-
			450	39600	479	2×20	529	2×20	575	2×25	-	-	-	-	-	-
			500	44000	478	2×20	524	2×25	570	2×25	613	2×30	-	-	-	-
			550	48400	483	2×20	523	2×25	565	2×30	608	2×30	-	-	-	-
			600	52800	492	2×25	528	2×30	565	2×30	604	2×35	680	2×50	-	-
			700	61600	518	2×30	549	2×35	580	2×40	611	2×40	675	2×50	741	2×60

Note: Selections in shaded areas not recommended for cooling applications.

Air Handling Unit - Air Washer

Table 2 Dimensions															
Model	A	B	H.A	C		D	E	F	G	1	J	K	L	H	W
AHU 250	1000	$\begin{gathered} \text { Class } \\ 4 \\ 1200 \end{gathered}$	350	No. of Row	Coil Width	650	1900	520	20	480	220	--	80	820	1000
AHU 350	1150					700	230	540	90	490	240	--	80	920	1100
AHU 500	1200					800	415	570	270	500	250	--	80	1120	1500
AHU 700	1300					900	375	550	295	655	270	--	80	1320	1500
AHU 1000	1500					1000	590	720	290	730	280	--	100	1400	2000
AHU 1200	1500	$\begin{gathered} \text { Class } \\ 6 \\ 1800 \end{gathered}$	400	1	100	1100	590	720	490	730	280	--	100	1600	2000
AHU 1500	1700			2	150	1300	520	860	650	830	320	--	100	1900	2000
AHU 1700	1700			3	180	1400	645	860	650	830	320	--	100	1900	2250
AHU 2000	1800			4	200	1300	687	925	640	890	350	--	120	1980	2400
AHU 2200	1800			6	280	1400	387	925	540	890	350	--	120	2180	2400
AHU 2500	1500	$\begin{gathered} \text { Class } \\ 8 \\ 2400 \end{gathered}$	400	8	330	1200	415	720	440	890	350	830	120	1780	3200
AHU 3000	1700					1300	545	860	525	835	320	1090	120	1780	4000
AHU 3500	1800					1350	562	925	540	890	350	1125	120	1880	4200
AHU 4000	1800					1400	637	925	660	890	350	1275	120	2000	4500
AHU 4500	2100					1800	700	1050	620	990	390	1400	120	2100	5000

Note:

- All Dimensions in mm
- For Air Handling Units with BAG filter add

70 cm and also for HEPA filter add 70 cm to mentioned dimensions

VIEW BACK \rightarrow VB

Note:

- All Dimensions in mm

Fan Performance

Table 5					Chille	Wa	Rat	(14 F							
Model	Nominal CFM	$\begin{aligned} & \mathrm{EDB} \\ & \hline\left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} \text { EWB } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	4 Rows					6 Rows			8 Rows			
				Total Load (MBH	$\begin{aligned} & \text { Sensible } \\ & \text { Load } \\ & \text { MBHH } \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { DB } \\ & \text { (FF) } \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { WB } \\ & \text { (if) } \end{aligned}$	Total Load (MBH	$\begin{aligned} & \text { Sensible } \\ & \text { Load } \\ & \text { (MBH) } \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { DB } \\ & \text { (FF) } \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { WB } \end{aligned}$	Total Load (MBH)	Sensible	$\begin{aligned} & \text { LVG } \\ & \text { DB } \\ & \text { (FF) } \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { WB } \\ & \text { (مَF) } \end{aligned}$
AHU 250	2500	80	67	72	59	58	58	104	73	53	53	125	82	50	50
		90	71	102	83	59	58	139	99	53	53	162	109	50	50
		100	75	132	106	60	59	175	124	54	53	200	136	50	50
AHU 350	3500	80	67	100	82	58	58	146	102	53	53	175	115	50	50
		90	71	141	115	59	59	194	138	53	53	227	153	50	50
		100	75	183	147	60	60	244	174	54	54	280	189	50	50
AHU 500	5000	80	67	177	131	56	55	237	158	51	51	274	175	48	48
		90	71	237	179	57	56	307	211	51	51	346	228	48	48
		100	75	300	226	58	57	380	261	51	51	422	281	48	48
AHU 700	7000	80	67	243	182	56	56	328	220	51	51	380	243	48	48
		90	71	327	249	57	56	425	293	51	51	481	318	48	48
		100	75	415	313	58	57	526	363	52	51	587	391	48	48
AHU 1000	10000	80	67	385	275	55	54	498	327	50	50	564	357	47	47
		90	71	506	371	56	55	363	431	50	50	707	464	47	47
		100	75	633	463	57	56	781	532	50	50	858	568	47	47
AHU 1200	12500	80	67	477	341	55	54	619	407	50	50	701	445	48	48
		90	71	626	460	56	55	791	537	50	50	881	579	47	47
		100	75	785	576	57	56	971	663	51	50	1070	709	47	47
AHU 1500	1500	80	67	569	408	55	54	741	487	50	50	839	532	48	48
		90	71	747	550	56	55	945	642	50	50	1053	693	47	47
		100	75	936	688	57	56	1160	793	51	51	1280	849	47	47
AHU 1700	17500	80	67	689	482	55	54	887	569	50	50	1003	625	47	47
		90	71	924	659	55	55	1155	761	50	50	1280	816	47	47
		100	75	1170	830	56	56	1432	946	50	50	1572	1007	47	47
AHU 2000	20000	80	67	689	482	55	54	887	569	50	50	1003	625	47	47
		90	71	924	659	55	55	1155	761	50	50	1280	816	47	47
		100	75	1170	830	56	56	1432	946	50	50	1572	1007	47	47
AHU 2200	22500	80	67	924	635	54	53	1171	744	49	49	1314	806	49	47
		90	71	1227	827	55	54	1512	990	49	49	1667	1058	47	47
		100	75	1547	1083	56	55	1873	1229	49	49	2042	1304	47	47
AHU 2500	25000	80	67	820	570	54	53	1036	671	49	49	1157	727	47	47
		90	71	1065	763	55	54	1310	879	49	49	1442	941	47	47
		100	75	1321	949	56	55	1599	1081	50	50	1743	1149	47	47
AHU 3000	30000	80	67	924	635	54	53	1171	744	49	49	1314	806	49	47
		90	71	1227	827	55	54	1512	990	49	49	1667	1058	47	47
		100	75	1547	1083	56	55	1873	1229	49	49	2042	1304	47	47
AHU 3500	35000	80	67	953	682	55	54	1238	813	50	50	1402	889	48	48
		90	71	1253	921	56	55	1582	1074	50	50	1761	1157	47	47
		100	75	1570	1152	57	56	1941	1325	51	50	2139	1417	47	47
AHU 4000	40000	80	67	1137	715	55	55	1481	973	50	50	1678	1064	48	48
		90	71	1494	1100	56	55	1889	1284	50	50	2106	1385	47	47
		100	75	1871	1377	57	56	2319	1585	51	51	2559	1697	47	47
AHU 4500	45000	80	67	1378	945	55	54	1775	1138	50	50	2006	1249	47	47
		90	71	1847	1318	55	55	2310	1522	50	50	2560	1632	47	47
		100	75	2339	1659	56	56	2864	1892	50	50	3144	2014	47	47

[^0]| Table 6 | | | Hot Water Rating (8 FPI) | | | | | | 4 Rows | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Nominal CFM | EDB
 (${ }^{\circ} \mathrm{F}$) | 1 Rows | | 2 | | 3 | | | |
| | | | Capacity (MBH) | $\begin{gathered} \text { LVG DB } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | Capacity (MBH) | $\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$ | Capacity (MBH) | $\begin{gathered} \text { LVG DB } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | Capacity (MBH) | $\underset{\left({ }^{\circ} \mathrm{F}\right)}{\text { LVG DB }}$ |
| AHU 250 | 2500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{gathered} 126 \\ 109 \\ 92 \\ 76 \end{gathered}$ | $\begin{aligned} & 42 \\ & 58 \\ & 73 \\ & 88 \end{aligned}$ | $\begin{aligned} & 211 \\ & 183 \\ & 155 \\ & 127 \end{aligned}$ | $\begin{gathered} 73 \\ 85 \\ 67 \\ 108 \end{gathered}$ | $\begin{aligned} & 281 \\ & 245 \\ & 209 \\ & 174 \end{aligned}$ | $\begin{aligned} & 100 \\ & 110 \\ & 119 \\ & 127 \end{aligned}$ | $\begin{aligned} & 330 \\ & 289 \\ & 248 \\ & 207 \end{aligned}$ | $\begin{aligned} & 120 \\ & 128 \\ & 135 \\ & 141 \end{aligned}$ |
| AHU 350 | 3500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 175 \\ & 151 \\ & 128 \\ & 105 \end{aligned}$ | $\begin{aligned} & 42 \\ & 57 \\ & 73 \\ & 88 \end{aligned}$ | $\begin{aligned} & 293 \\ & 254 \\ & 215 \\ & 177 \end{aligned}$ | $\begin{gathered} 72 \\ 85 \\ 97 \\ 108 \end{gathered}$ | $\begin{aligned} & 391 \\ & 341 \\ & 292 \\ & 243 \end{aligned}$ | $\begin{gathered} 99 \\ 109 \\ 118 \\ 127 \end{gathered}$ | $\begin{aligned} & 461 \\ & 402 \\ & 345 \\ & 288 \end{aligned}$ | $\begin{aligned} & 119 \\ & 127 \\ & 160 \\ & 160 \end{aligned}$ |
| AHU 500 | 5000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 262 \\ & 228 \\ & 195 \\ & 161 \end{aligned}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{aligned} & 438 \\ & 382 \\ & 326 \\ & 271 \end{aligned}$ | $\begin{gathered} 76 \\ 88 \\ 100 \\ 111 \end{gathered}$ | $\begin{aligned} & 576 \\ & 504 \\ & 433 \\ & 362 \end{aligned}$ | $\begin{aligned} & 103 \\ & 113 \\ & 122 \\ & 130 \end{aligned}$ | $\begin{aligned} & 673 \\ & 589 \\ & 507 \\ & 425 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 143 \end{aligned}$ |
| AHU 700 | 7000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 536 \\ & 320 \\ & 273 \\ & 226 \end{aligned}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{aligned} & 614 \\ & 535 \\ & 457 \\ & 379 \end{aligned}$ | $\begin{gathered} 76 \\ 88 \\ 100 \\ 111 \end{gathered}$ | $\begin{aligned} & 807 \\ & 706 \\ & 606 \\ & 507 \end{aligned}$ | $\begin{aligned} & 103 \\ & 113 \\ & 122 \\ & 130 \end{aligned}$ | $\begin{aligned} & 942 \\ & 825 \\ & 710 \\ & 596 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 143 \end{aligned}$ |
| AHU 1000 | 10000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 535 \\ & 467 \\ & 400 \\ & 333 \end{aligned}$ | $\begin{aligned} & 45 \\ & 60 \\ & 76 \\ & 91 \end{aligned}$ | $\begin{aligned} & 893 \\ & 781 \\ & 669 \\ & 558 \end{aligned}$ | $\begin{gathered} 78 \\ 90 \\ 102 \\ 113 \end{gathered}$ | $\begin{aligned} & 1166 \\ & 1022 \\ & 880 \\ & 738 \end{aligned}$ | $\begin{aligned} & 104 \\ & 114 \\ & 123 \\ & 131 \end{aligned}$ | $\begin{gathered} 1356 \\ 1190 \\ 1025 \\ 862 \end{gathered}$ | $\begin{aligned} & 124 \\ & 131 \\ & 138 \\ & 144 \end{aligned}$ |
| AHU 1200 | 12500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 660 \\ & 576 \\ & 493 \\ & 410 \end{aligned}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{gathered} 1104 \\ 965 \\ 827 \\ 690 \end{gathered}$ | $\begin{gathered} 77 \\ 89 \\ 101 \\ 112 \end{gathered}$ | $\begin{gathered} 1445 \\ 1266 \\ 1090 \\ 914 \end{gathered}$ | $\begin{aligned} & 103 \\ & 113 \\ & 122 \\ & 131 \end{aligned}$ | $\begin{aligned} & 1683 \\ & 1476 \\ & 1272 \\ & 1070 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 144 \end{aligned}$ |
| AHU 1500 | 1500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 784 \\ & 685 \\ & 587 \\ & 488 \end{aligned}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{gathered} 1315 \\ 1150 \\ 986 \\ 822 \end{gathered}$ | $\begin{gathered} 76 \\ 89 \\ 101 \\ 112 \end{gathered}$ | $\begin{aligned} & 1723 \\ & 1510 \\ & 1300 \\ & 1090 \end{aligned}$ | $\begin{aligned} & 102 \\ & 112 \\ & 122 \\ & 130 \end{aligned}$ | $\begin{aligned} & 2009 \\ & 1763 \\ & 1518 \\ & 1277 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 143 \end{aligned}$ |
| AHU 1700 | 17500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 926 \\ & 810 \\ & 694 \\ & 579 \end{aligned}$ | $\begin{aligned} & 48 \\ & 62 \\ & 76 \\ & 90 \end{aligned}$ | $\begin{gathered} 1549 \\ 1356 \\ 1164 \\ 972 \end{gathered}$ | $\begin{gathered} 81 \\ 91 \\ 101 \\ 111 \end{gathered}$ | $\begin{aligned} & 2045 \\ & 1769 \\ & 1548 \\ & 1303 \end{aligned}$ | $\begin{aligned} & 107 \\ & 114 \\ & 121 \\ & 128 \end{aligned}$ | $\begin{aligned} & 2356 \\ & 2069 \\ & 1782 \\ & 1500 \end{aligned}$ | $\begin{aligned} & 124 \\ & 128 \\ & 133 \\ & 139 \end{aligned}$ |
| AHU 2000 | 20000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 1091 \\ & 955 \\ & 819 \\ & 684 \end{aligned}$ | $\begin{aligned} & 46 \\ & 61 \\ & 77 \\ & 92 \end{aligned}$ | $\begin{gathered} 111 \\ 1593 \\ 1368 \\ 1145 \end{gathered}$ | $\begin{gathered} 79 \\ 91 \\ 103 \\ 114 \end{gathered}$ | $\begin{aligned} & 2363 \\ & 2073 \\ & 1786 \\ & 1502 \end{aligned}$ | $\begin{aligned} & 106 \\ & 115 \\ & 124 \\ & 133 \end{aligned}$ | $\begin{aligned} & 2739 \\ & 2404 \\ & 2073 \\ & 1746 \end{aligned}$ | $\begin{aligned} & 125 \\ & 132 \\ & 139 \\ & 145 \end{aligned}$ |
| AHU 2200 | 22500 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{gathered} 1203 \\ 1053 \\ 904 \\ 755 \end{gathered}$ | $\begin{aligned} & 49 \\ & 63 \\ & 77 \\ & 91 \end{aligned}$ | $\begin{aligned} & 2014 \\ & 1764 \\ & 1516 \\ & 1269 \end{aligned}$ | $\begin{gathered} 82 \\ 92 \\ 102 \\ 112 \end{gathered}$ | $\begin{aligned} & 2643 \\ & 2322 \\ & 2004 \\ & 1688 \end{aligned}$ | $\begin{aligned} & 108 \\ & 115 \\ & 122 \\ & 129 \end{aligned}$ | $\begin{aligned} & 3047 \\ & 2675 \\ & 2307 \\ & 1943 \end{aligned}$ | $\begin{aligned} & 124 \\ & 129 \\ & 134 \\ & 139 \end{aligned}$ |
| AHU 2500 | 25000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{gathered} 1320 \\ 1153 \\ 987 \\ 821 \end{gathered}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{aligned} & 2209 \\ & 1931 \\ & 1655 \\ & 1381 \end{aligned}$ | $\begin{gathered} 77 \\ 89 \\ 101 \\ 112 \end{gathered}$ | $\begin{aligned} & 2890 \\ & 2533 \\ & 2180 \\ & 1829 \end{aligned}$ | $\begin{aligned} & 103 \\ & 113 \\ & 122 \\ & 131 \end{aligned}$ | $\begin{aligned} & 3366 \\ & 2953 \\ & 2544 \\ & 2140 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 144 \end{aligned}$ |
| AHU 3000 | 30000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{gathered} 1569 \\ 1371 \\ 1174 \\ 977 \end{gathered}$ | $\begin{aligned} & 44 \\ & 60 \\ & 75 \\ & 90 \end{aligned}$ | $\begin{aligned} & 2631 \\ & 2300 \\ & 1972 \\ & 1645 \end{aligned}$ | $\begin{gathered} 76 \\ 89 \\ 101 \\ 112 \end{gathered}$ | $\begin{aligned} & 3446 \\ & 3021 \\ & 2600 \\ & 2181 \end{aligned}$ | $\begin{aligned} & 102 \\ & 112 \\ & 122 \\ & 130 \end{aligned}$ | $\begin{aligned} & 4019 \\ & 3526 \\ & 3037 \\ & 2555 \end{aligned}$ | $\begin{aligned} & 122 \\ & 130 \\ & 137 \\ & 143 \end{aligned}$ |
| AHU 3500 | 35000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 1852 \\ & 1620 \\ & 1388 \\ & 1158 \end{aligned}$ | $\begin{aligned} & 48 \\ & 62 \\ & 76 \\ & 90 \end{aligned}$ | $\begin{aligned} & 3098 \\ & 2712 \\ & 1228 \\ & 1944 \end{aligned}$ | $\begin{gathered} 81 \\ 91 \\ 101 \\ 111 \end{gathered}$ | $\begin{aligned} & 4090 \\ & 3592 \\ & 3096 \\ & 2606 \end{aligned}$ | $\begin{aligned} & 107 \\ & 114 \\ & 121 \\ & 128 \end{aligned}$ | $\begin{aligned} & 4712 \\ & 4138 \\ & 3564 \\ & 3000 \end{aligned}$ | $\begin{aligned} & 124 \\ & 128 \\ & 133 \\ & 139 \end{aligned}$ |
| AHU 4000 | 40000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 2183 \\ & 1911 \\ & 1639 \\ & 1368 \end{aligned}$ | $\begin{aligned} & 46 \\ & 61 \\ & 77 \\ & 92 \end{aligned}$ | $\begin{aligned} & 3639 \\ & 3187 \\ & 2737 \\ & 2290 \end{aligned}$ | $\begin{gathered} 79 \\ 91 \\ 103 \\ 114 \end{gathered}$ | 4726
 4147
 3573
 3004 | $\begin{aligned} & 106 \\ & 115 \\ & 124 \\ & 133 \end{aligned}$ | $\begin{aligned} & 2479 \\ & 4809 \\ & 4147 \\ & 3492 \end{aligned}$ | $\begin{aligned} & 125 \\ & 132 \\ & 139 \\ & 145 \end{aligned}$ |
| AHU 4500 | 45000 | $\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$ | $\begin{aligned} & 2406 \\ & 2106 \\ & 1808 \\ & 1510 \end{aligned}$ | $\begin{aligned} & 49 \\ & 63 \\ & 77 \\ & 91 \end{aligned}$ | $\begin{aligned} & 4028 \\ & 3628 \\ & 3032 \\ & 2538 \end{aligned}$ | $\begin{gathered} 82 \\ 92 \\ 102 \\ 112 \end{gathered}$ | 5286
 4644
 4008
 3376 | $\begin{aligned} & 108 \\ & 115 \\ & 122 \\ & 129 \end{aligned}$ | $\begin{aligned} & 6094 \\ & 5350 \\ & 4614 \\ & 3886 \end{aligned}$ | $\begin{aligned} & 124 \\ & 129 \\ & 134 \\ & 139 \end{aligned}$ |

Note: - Hot water Entering: $180^{\circ} \mathrm{F}$ \& Leaving: $160^{\circ} \mathrm{F}$

- \quad LVG $=$ Leaving air Temperature.
- $E D B=$ Entering air dry bulb Temperature.
- $M B H=1000 \mathrm{Btu} / \mathrm{hr}$.

Table 7			Hot Water Rating [14 FPI)						4 Rows	
Model	Nominal CFM	$\begin{aligned} & \text { EDB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	1 Rows		2 Rows		3 Rows			
			Capacity (MBH)	$\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	Capacity (MBH)	$\begin{gathered} \text { LVG DB } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	Capacity (MBH)	$\underset{\left({ }^{\circ} \mathrm{F}\right)}{\text { LVG DB }}$	Capacity (MBH)	$\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$
AHU 250	2500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 176 \\ & 152 \\ & 128 \\ & 105 \end{aligned}$	$\begin{aligned} & 60 \\ & 74 \\ & 87 \\ & 99 \end{aligned}$	$\begin{aligned} & 274 \\ & 237 \\ & 201 \\ & 165 \end{aligned}$	$\begin{gathered} 97 \\ 107 \\ 115 \\ 123 \end{gathered}$	$\begin{aligned} & 346 \\ & 302 \\ & 258 \\ & 214 \end{aligned}$	$\begin{aligned} & 127 \\ & 133 \\ & 139 \\ & 144 \end{aligned}$	$\begin{aligned} & 390 \\ & 340 \\ & 291 \\ & 243 \end{aligned}$	$\begin{aligned} & 145 \\ & 149 \\ & 153 \\ & 156 \end{aligned}$
AHU 350	3500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 245 \\ & 212 \\ & 179 \\ & 146 \end{aligned}$	$\begin{aligned} & 60 \\ & 73 \\ & 86 \\ & 99 \end{aligned}$	$\begin{aligned} & 381 \\ & 330 \\ & 280 \\ & 230 \end{aligned}$	$\begin{gathered} 97 \\ 106 \\ 115 \\ 123 \end{gathered}$	$\begin{aligned} & 483 \\ & 420 \\ & 359 \\ & 299 \end{aligned}$	$\begin{aligned} & 126 \\ & 132 \\ & 138 \\ & 143 \end{aligned}$	$\begin{aligned} & 544 \\ & 475 \\ & 407 \\ & 340 \end{aligned}$	$\begin{aligned} & 145 \\ & 149 \\ & 153 \end{aligned}$
AHU 500	5000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 368 \\ & 320 \\ & 273 \\ & 225 \end{aligned}$	$\begin{gathered} 63 \\ 77 \\ 90 \\ 102 \end{gathered}$	$\begin{aligned} & 571 \\ & 497 \\ & 424 \\ & 352 \end{aligned}$	$\begin{aligned} & 102 \\ & 111 \\ & 120 \\ & 128 \end{aligned}$	$\begin{aligned} & 710 \\ & 621 \\ & 532 \\ & 445 \end{aligned}$	$\begin{aligned} & 130 \\ & 137 \\ & 142 \\ & 147 \end{aligned}$	$\begin{aligned} & 793 \\ & 694 \\ & 596 \\ & 500 \end{aligned}$	$\begin{aligned} & 148 \\ & 152 \\ & 156 \\ & 159 \end{aligned}$
AHU 700	7000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 516 \\ & 449 \\ & 382 \\ & 316 \end{aligned}$	$\begin{gathered} 63 \\ 77 \\ 90 \\ 102 \end{gathered}$	$\begin{aligned} & 799 \\ & 696 \\ & 594 \\ & 493 \end{aligned}$	$\begin{aligned} & 102 \\ & 111 \\ & 120 \\ & 128 \end{aligned}$	$\begin{aligned} & 995 \\ & 869 \\ & 746 \\ & 624 \end{aligned}$	$\begin{aligned} & 130 \\ & 137 \\ & 142 \\ & 147 \end{aligned}$	$\begin{gathered} 1110 \\ 971 \\ 834 \\ 700 \end{gathered}$	$\begin{gathered} 148 \\ 152 \\ 156 \\ 159.6 \end{gathered}$
AHU 1000	10000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 752 \\ & 656 \\ & 561 \\ & 466 \end{aligned}$	$\begin{gathered} 64 \\ 78 \\ 91 \\ 104 \end{gathered}$	$\begin{array}{r} 1165 \\ 1017 \\ 871 \\ 726 \end{array}$	$\begin{aligned} & 104 \\ & 113 \\ & 122 \\ & 130 \end{aligned}$	$\begin{aligned} & 1438 \\ & 1259 \\ & 1082 \\ & 908 \end{aligned}$	$\begin{aligned} & 132 \\ & 138 \\ & 144 \\ & 149 \end{aligned}$	$\begin{aligned} & 1599 \\ & 1400 \\ & 1205 \\ & 1013 \end{aligned}$	$\begin{aligned} & 149 \\ & 154 \\ & 157 \\ & 161 \end{aligned}$
AHU 1200	12500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 829 \\ & 811 \\ & 693 \\ & 576 \end{aligned}$	$\begin{gathered} 64 \\ 77 \\ 91 \\ 103 \end{gathered}$	$\begin{aligned} & 1443 \\ & 1261 \\ & 1080 \\ & 900 \end{aligned}$	$\begin{aligned} & 103 \\ & 112 \\ & 121 \\ & 129 \end{aligned}$	$\begin{aligned} & 1786 \\ & 1564 \\ & 1344 \\ & 1128 \end{aligned}$	$\begin{aligned} & 131 \\ & 138 \\ & 143 \\ & 149 \end{aligned}$	$\begin{aligned} & 1989 \\ & 1742 \\ & 1499 \\ & 1260 \end{aligned}$	$\begin{aligned} & 148 \\ & 153 \\ & 157 \\ & 160 \end{aligned}$
AHU 1500	1500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1106 \\ & 965 \\ & 825 \\ & 686 \end{aligned}$	$\begin{gathered} 63 \\ 77 \\ 90 \\ 103 \end{gathered}$	$\begin{aligned} & 1722 \\ & 1504 \\ & 1288 \\ & 1073 \end{aligned}$	$\begin{aligned} & 102 \\ & 112 \\ & 121 \\ & 129 \end{aligned}$	$\begin{aligned} & 2134 \\ & 1868 \\ & 1606 \\ & 1347 \end{aligned}$	$\begin{aligned} & 130 \\ & 137 \\ & 143 \\ & 148 \end{aligned}$	$\begin{aligned} & 2379 \\ & 2083 \\ & 1793 \\ & 1507 \end{aligned}$	$\begin{aligned} & 148 \\ & 152 \\ & 156 \\ & 160 \end{aligned}$
AHU 1700	17500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{gathered} 1307 \\ 1142 \\ 978 \\ 814 \end{gathered}$	$\begin{gathered} 68 \\ 80 \\ 91 \\ 102 \end{gathered}$	$\begin{aligned} & 2028 \\ & 1773 \\ & 1520 \\ & 1270 \end{aligned}$	$\begin{aligned} & 106 \\ & 113 \\ & 120 \\ & 126 \end{aligned}$	$\begin{aligned} & 2531 \\ & 2219 \\ & 1911 \\ & 1608 \end{aligned}$	$\begin{aligned} & 133 \\ & 136 \\ & 140 \\ & 144 \end{aligned}$	$\begin{aligned} & 2787 \\ & 2442 \\ & 2102 \\ & 1769 \end{aligned}$	$\begin{aligned} & 146 \\ & 148 \\ & 150 \\ & 153 \end{aligned}$
AHU 2000	20000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1537 \\ & 1343 \\ & 1151 \\ & 960 \end{aligned}$	$\begin{gathered} 66 \\ 79 \\ 93 \\ 105 \end{gathered}$	$\begin{aligned} & 2373 \\ & 2076 \\ & 1781 \\ & 1489 \end{aligned}$	$\begin{aligned} & 106 \\ & 115 \\ & 124 \\ & 132 \end{aligned}$	$\begin{aligned} & 2910 \\ & 2550 \\ & 2195 \\ & 1845 \end{aligned}$	$\begin{aligned} & 134 \\ & 140 \\ & 146 \\ & 151 \end{aligned}$	$\begin{aligned} & 3224 \\ & 2824 \\ & 2432 \\ & 2048 \end{aligned}$	$\begin{aligned} & 151 \\ & 155 \\ & 159 \\ & 162 \end{aligned}$
AHU 2200	22500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1699 \\ & 1485 \\ & 1273 \\ & 1063 \end{aligned}$	$\begin{gathered} 69 \\ 80 \\ 92 \\ 103 \end{gathered}$	$\begin{aligned} & 2639 \\ & 2307 \\ & 1908 \\ & 1657 \end{aligned}$	$\begin{aligned} & 108 \\ & 114 \\ & 118 \\ & 127 \end{aligned}$	$\begin{aligned} & 3270 \\ & 2868 \\ & 2472 \\ & 2081 \end{aligned}$	$\begin{aligned} & 134 \\ & 137 \\ & 141 \\ & 145 \end{aligned}$	$\begin{aligned} & 3601 \\ & 3156 \\ & 2718 \\ & 2289 \end{aligned}$	$\begin{aligned} & 147 \\ & 149 \\ & 151 \\ & 153 \end{aligned}$
AHU 2500	25000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1857 \\ & 1623 \\ & 1388 \\ & 1153 \end{aligned}$	$\begin{gathered} 64 \\ 77 \\ 91 \\ 103 \end{gathered}$	$\begin{aligned} & 2887 \\ & 2522 \\ & 2160 \\ & 1800 \end{aligned}$	$\begin{aligned} & 103 \\ & 112 \\ & 121 \\ & 129 \end{aligned}$	$\begin{aligned} & 3573 \\ & 3128 \\ & 2689 \\ & 2256 \end{aligned}$	$\begin{aligned} & 131 \\ & 138 \\ & 143 \\ & 149 \end{aligned}$	$\begin{aligned} & 3979 \\ & 3484 \\ & 2998 \\ & 2521 \end{aligned}$	$\begin{aligned} & 148 \\ & 153 \\ & 157 \\ & 160 \end{aligned}$
AHU 3000	30000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2213 \\ & 1931 \\ & 1651 \\ & 1372 \end{aligned}$	$\begin{gathered} 63 \\ 77 \\ 90 \\ 103 \end{gathered}$	$\begin{aligned} & 3444 \\ & 3008 \\ & 2576 \\ & 2147 \end{aligned}$	$\begin{aligned} & 102 \\ & 112 \\ & 121 \\ & 129 \end{aligned}$	$\begin{aligned} & 4268 \\ & 3736 \\ & 3212 \\ & 2695 \end{aligned}$	$\begin{aligned} & 130 \\ & 137 \\ & 143 \\ & 148 \end{aligned}$	$\begin{aligned} & 4759 \\ & 4167 \\ & 3586 \\ & 3015 \end{aligned}$	$\begin{aligned} & 148 \\ & 152 \\ & 156 \\ & 160 \end{aligned}$
AHU 3500	35000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2614 \\ & 2284 \\ & 1956 \\ & 1628 \end{aligned}$	$\begin{gathered} 68 \\ 80 \\ 91 \\ 102 \end{gathered}$	$\begin{aligned} & 4056 \\ & 3546 \\ & 3040 \\ & 2540 \end{aligned}$	$\begin{aligned} & 106 \\ & 113 \\ & 120 \\ & 126 \end{aligned}$	$\begin{aligned} & 5062 \\ & 4438 \\ & 3822 \\ & 3216 \end{aligned}$	$\begin{aligned} & 133 \\ & 136 \\ & 140 \\ & 144 \end{aligned}$	$\begin{aligned} & 5574 \\ & 4884 \\ & 4204 \\ & 3538 \end{aligned}$	$\begin{aligned} & 146 \\ & 148 \\ & 150 \\ & 153 \end{aligned}$
AHU 4000	40000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 3074 \\ & 2687 \\ & 2302 \\ & 1920 \end{aligned}$	$\begin{gathered} 66 \\ 79 \\ 93 \\ 105 \end{gathered}$	$\begin{aligned} & 4746 \\ & 4152 \\ & 3562 \\ & 2978 \end{aligned}$	$\begin{aligned} & 106 \\ & 115 \\ & 124 \\ & 132 \end{aligned}$	$\begin{aligned} & 5821 \\ & 5101 \\ & 4391 \\ & 3690 \end{aligned}$	$\begin{aligned} & 134 \\ & 140 \\ & 146 \\ & 151 \end{aligned}$	$\begin{aligned} & 6448 \\ & 5649 \\ & 4865 \\ & 4090 \end{aligned}$	$\begin{aligned} & 151 \\ & 155 \\ & 159 \\ & 162 \end{aligned}$
AHU 4500	45000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 3398 \\ & 2970 \\ & 2546 \\ & 2126 \end{aligned}$	$\begin{gathered} 69 \\ 80 \\ 92 \\ 103 \end{gathered}$	$\begin{aligned} & 5278 \\ & 4614 \\ & 3816 \\ & 3314 \end{aligned}$	$\begin{aligned} & 108 \\ & 114 \\ & 118 \\ & 127 \end{aligned}$	$\begin{aligned} & 6540 \\ & 5736 \\ & 4944 \\ & 4162 \end{aligned}$	$\begin{aligned} & 134 \\ & 137 \\ & 141 \\ & 145 \end{aligned}$	$\begin{aligned} & 7202 \\ & 6312 \\ & 5436 \\ & 4378 \end{aligned}$	$\begin{aligned} & 147 \\ & 149 \\ & 151 \\ & 153 \end{aligned}$

Note: - Hot water Entering: $180^{\circ} \mathrm{F}$ \& Leaving: $160^{\circ} \mathrm{F}$

- \quad LVG $=$ Leaving air Temperature.
- EDB $=$ Entering air dry bulb Temperature.
- $\mathrm{MBH}=1000 \mathrm{Btu} / \mathrm{hr}$.

- Values ratings based on steam of pressure 5PSIG.
- EDB = Entering air dry bulb temperature.

Table 9 D.X Coil Rating (14 FPI)											
	Nominal CFM	$\begin{aligned} & \text { EDB } \\ & \left({ }^{\circ} F\right) \end{aligned}$	$\begin{aligned} & \text { EWB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	4 Rows					6 Rows		
Model				Total Load (MBH)	Sensible Load [MBH]	$\begin{gathered} \text { LVG } \\ \text { DB } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & \text { LVG } \\ & \text { WB } \\ & \text { (}{ }^{\circ} \mathrm{F} \text { (} \end{aligned}$	Total Load (MBH)	Sensible Load [MBH]	$\begin{aligned} & \text { LVG } \\ & \text { DB } \\ & \left.{ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \text { LVG } \\ & \text { WB } \\ & \text { (} \left.{ }^{\circ} \mathrm{F}\right) \end{aligned}$
AHU 250	2500	80	67	89	62	57	55	118	78	51	50
		90	71	102	79	61	58	137	99	54	52
		100	75	117	96	65	60	157	119	56	55
AHU 350	3500	80	67	123	86	57	55	163	109	51	50
		90	71	147	112	60	57	196	140	53	52
		100	75	162	134	65	61	217	166	57	55
AHU 500	5000	80	67	178	125	57	55	237	157	51	50
		90	71	205	159	61	58	274	198	54	52
		100	75	235	193	65	60	315	239	56	55
AHU 700	7000	80	67	250	175	57	55	332	221	51	50
		90	71	288	223	61	58	384	277	54	52
		100	75	329	270	65	60	441	334	56	55
AHU 1000	10000	80	67	354	249	57	55	471	314	51	50
		90	71	408	317	61	58	545	395	54	52
		100	75	467	384	65	61	626	476	56	55
AHU 1200	12500	80	67	434	307	57	55	578	387	51	50
		90	71	500	391	61	58	668	488	54	53
		100	75	572	474	65	61	767	588	57	55
AHU 1500	1500	80	67	513	365	57	55	684	460	52	51
		90	71	591	465	61	58	791	580	54	53
		100	75	676	564	65	61	908	700	57	55
AHU 1700	17500	80	67	583	477	59	57	813	602	53	51
		90	71	666	588	63	60	929	737	55	54
		100	75	726	700	67	64	1069	872	59	67
AHU 2000	20000	80	67	718	503	57	55	953	634	51	50
		90	71	827	639	61	57	1103	797	53	52
		100	75	946	774	65	60	1267	960	56	54
AHU 2200	22500	80	67	756	616	54	53	1054	718	52	51
		90	71	864	760	61	60	1204	951	56	55
		100	75	962	839	66	64	1385	1027	58	57
AHU 2500	25000	80	67	868	615	57	55	1156	775	51	50
		90	71	1000	782	61	58	1337	976	54	53
		100	75	1144	949	65	61	1535	1177	57	55
AHU 3000	30000	80	67	1027	730	57	55	1369	921	52	51
		90	71	1182	930	61	58	1583	1160	54	53
		100	75	1352	1129	65	61	1817	1400	57	55
AHU 3500	35000	80	67	1166	953	59	57	1326	1204	53	51
		90	71	1332	1176	63	60	1858	1474	55	54
		100	75	1452	1400	67	64	2138	1744	59	57
AHU 4000	40000	80	67	1436	1007	57	55	1907	1268	51	50
		90	71	1655	1278	61	57	2207	1594	53	52
		100	75	1893	1549	65	60	2534	1920	56	54
AHU 4500	45000	80	67	1512	1232	54	53	2108	1436	52	51
		90	71	1728	1520	61	60	2408	1902	56	55
		100	75	1924	1678	66	64	2770	2054	58	57

Note: - Values based in entering chilled water temperature of $45^{\circ} \mathrm{F}$

- $E D B=$ Entering air dry bulb temperature
- EWB = Entering air wet bulb temperature
- LVG = Leaving air temperature
- $\mathrm{MBH}=1000 \mathrm{BTU} / \mathrm{hr}$.

Table 10			Hot Water Rating , Multi Zone							
Model	Nominal CFM	EDB ${ }^{\circ} \mathrm{F}$)	1 Rows \leftarrow		$-8 \mathrm{FPI} \rightarrow 2$	2 Rows	3 Rows $\leftarrow-$		$-14 \mathrm{FPI} \rightarrow 4$	4 Rows
			Capacity (MBH)	$\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	Capacity (MBH)	$\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	Capacity (MBH)	$\underset{\substack{\left.\circ \\ \hline{ }^{\circ} \mathrm{F}\right)}}{\mathrm{LVG}}$	Capacity (MBH)	$\underset{\left({ }^{\circ} \mathrm{F}\right)}{\text { LVG DB }}$
AHU 250	2500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 110 \\ & 95 \\ & 80 \\ & 66 \end{aligned}$	$\begin{aligned} & 36 \\ & 53 \\ & 69 \\ & 84 \end{aligned}$	$\begin{aligned} & 188 \\ & 163 \\ & 138 \\ & 113 \end{aligned}$	$\begin{gathered} 64 \\ 78 \\ 90 \\ 103 \end{gathered}$	$\begin{gathered} 155 \\ 134 \\ 113 \\ 93 \end{gathered}$	$\begin{aligned} & 53 \\ & 67 \\ & 81 \\ & 95 \end{aligned}$	$\begin{aligned} & 249 \\ & 216 \\ & 182 \\ & 150 \end{aligned}$	$\begin{gathered} 88 \\ 98 \\ 108 \\ 117 \end{gathered}$
AHU 350	3500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 159 \\ & 138 \\ & 116 \\ & 95 \end{aligned}$	$\begin{aligned} & 38 \\ & 54 \\ & 70 \\ & 85 \end{aligned}$	$\begin{aligned} & 270 \\ & 235 \\ & 199 \\ & 164 \end{aligned}$	$\begin{gathered} 66 \\ 80 \\ 92 \\ 104 \end{gathered}$	$\begin{aligned} & 225 \\ & 194 \\ & 164 \\ & 134 \end{aligned}$	$\begin{aligned} & 54 \\ & 69 \\ & 82 \\ & 96 \end{aligned}$	$\begin{aligned} & 357 \\ & 309 \\ & 262 \\ & 215 \end{aligned}$	$\begin{gathered} 90 \\ 100 \\ 110 \\ 119 \end{gathered}$
AHU 500	5000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 238 \\ & 205 \\ & 175 \\ & 145 \end{aligned}$	$\begin{aligned} & 39 \\ & 55 \\ & 71 \\ & 87 \end{aligned}$	$\begin{aligned} & 402 \\ & 350 \\ & 299 \\ & 249 \end{aligned}$	$\begin{gathered} 69 \\ 82 \\ 95 \\ 107 \end{gathered}$	$\begin{aligned} & 335 \\ & 292 \\ & 248 \\ & 205 \end{aligned}$	$\begin{aligned} & 57 \\ & 71 \\ & 85 \\ & 98 \end{aligned}$	$\begin{aligned} & 532 \\ & 463 \\ & 395 \\ & 327 \end{aligned}$	$\begin{gathered} 94 \\ 104 \\ 114 \\ 123 \end{gathered}$
AHU 700	7000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 328 \\ & 286 \\ & 243 \\ & 201 \end{aligned}$	$\begin{aligned} & 39 \\ & 55 \\ & 71 \\ & 86 \end{aligned}$	$\begin{aligned} & 560 \\ & 487 \\ & 417 \\ & 345 \end{aligned}$	$\begin{gathered} 69 \\ 82 \\ 94 \\ 106 \end{gathered}$	$\begin{aligned} & 465 \\ & 405 \\ & 345 \\ & 285 \end{aligned}$	$\begin{aligned} & 56 \\ & 71 \\ & 85 \\ & 98 \end{aligned}$	$\begin{aligned} & 740 \\ & 644 \\ & 549 \\ & 455 \end{aligned}$	$\begin{gathered} 93 \\ 104 \\ 113 \\ 122 \end{gathered}$
AHU 1000	10000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 478 \\ & 417 \\ & 357 \\ & 297 \end{aligned}$	$\begin{aligned} & 40 \\ & 56 \\ & 72 \\ & 87 \end{aligned}$	$\begin{aligned} & 813 \\ & 711 \\ & 609 \\ & 508 \end{aligned}$	$\begin{gathered} 70 \\ 83 \\ 96 \\ 108 \end{gathered}$	$\begin{aligned} & 680 \\ & 593 \\ & 507 \\ & 421 \end{aligned}$	$\begin{aligned} & 58 \\ & 72 \\ & 86 \\ & 99 \end{aligned}$	$\begin{gathered} 1080 \\ 942 \\ 808 \\ 672 \end{gathered}$	$\begin{gathered} 96 \\ 106 \\ 116 \\ 124 \end{gathered}$
AHU 1200	12500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 602 \\ & 527 \\ & 450 \\ & 375 \end{aligned}$	$\begin{aligned} & 40 \\ & 56 \\ & 72 \\ & 88 \end{aligned}$	$\begin{gathered} 1023 \\ 895 \\ 768 \\ 640 \end{gathered}$	$\begin{gathered} 71 \\ 84 \\ 96 \\ 108 \end{gathered}$	$\begin{aligned} & 857 \\ & 748 \\ & 639 \\ & 531 \end{aligned}$	$\begin{gathered} 58 \\ 73 \\ 86 \\ 100 \end{gathered}$	$\begin{gathered} 1357 \\ 1185 \\ 1015 \\ 846 \end{gathered}$	$\begin{gathered} 96 \\ 106 \\ 116 \\ 125 \end{gathered}$
AHU 1500	1500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 706 \\ & 617 \\ & 528 \\ & 439 \end{aligned}$	$\begin{aligned} & 39 \\ & 55 \\ & 71 \\ & 87 \end{aligned}$	$\begin{gathered} 1204 \\ 1055 \\ 902 \\ 753 \end{gathered}$	$\begin{gathered} 69 \\ 83 \\ 95 \\ 107 \end{gathered}$	$\begin{array}{r} 1007 \\ 878 \\ 750 \\ 624 \end{array}$	$\begin{aligned} & 57 \\ & 72 \\ & 85 \\ & 99 \end{aligned}$	$\begin{gathered} 1603 \\ 1400 \\ 1198 \\ 998 \end{gathered}$	$\begin{gathered} 94 \\ 105 \\ 115 \\ 124 \end{gathered}$
AHU 1700	17500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 837 \\ & 732 \\ & 628 \\ & 523 \end{aligned}$	$\begin{aligned} & 44 \\ & 58 \\ & 73 \\ & 87 \end{aligned}$	$\begin{gathered} 1425 \\ 1248 \\ 1070 \\ 892 \end{gathered}$	$\begin{gathered} 75 \\ 85 \\ 96 \\ 107 \end{gathered}$	$\begin{aligned} & 1193 \\ & 1043 \\ & 892 \\ & 744 \end{aligned}$	$\begin{aligned} & 62 \\ & 75 \\ & 88 \\ & 99 \end{aligned}$	$\begin{aligned} & 1896 \\ & 1657 \\ & 1420 \\ & 1185 \end{aligned}$	$\begin{aligned} & 100 \\ & 107 \\ & 114 \\ & 122 \end{aligned}$
AHU 2000	20000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 968 \\ & 847 \\ & 728 \\ & 607 \end{aligned}$	$\begin{aligned} & 40 \\ & 57 \\ & 72 \\ & 88 \end{aligned}$	$\begin{aligned} & 1647 \\ & 1442 \\ & 1239 \\ & 1032 \end{aligned}$	$\begin{gathered} 71 \\ 84 \\ 97 \\ 109 \end{gathered}$	$\begin{gathered} 1380 \\ 1209 \\ 1035 \\ 864 \end{gathered}$	$\begin{gathered} 59 \\ 73 \\ 87 \\ 100 \end{gathered}$	$\begin{aligned} & 2189 \\ & 1915 \\ & 1642 \\ & 1373 \end{aligned}$	$\begin{gathered} 97 \\ 107 \\ 117 \\ 126 \end{gathered}$
AHU 2200	22500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{gathered} 1086 \\ 950 \\ 814 \\ 678 \end{gathered}$	$\begin{aligned} & 44 \\ & 59 \\ & 73 \\ & 84 \end{aligned}$	$\begin{aligned} & 1846 \\ & 1616 \\ & 1387 \\ & 1156 \end{aligned}$	$\begin{gathered} 75 \\ 86 \\ 96 \\ 107 \end{gathered}$	$\begin{gathered} 1547 \\ 1352 \\ 1156 \\ 963 \end{gathered}$	$\begin{aligned} & 63 \\ & 75 \\ & 87 \\ & 99 \end{aligned}$	$\begin{aligned} & 2451 \\ & 2142 \\ & 1836 \\ & 1532 \end{aligned}$	$\begin{gathered} 88 \\ 107 \\ 115 \\ 122 \end{gathered}$
AHU 2500	25000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{gathered} 1204 \\ 1054 \\ 900 \\ 750 \end{gathered}$	$\begin{aligned} & 40 \\ & 56 \\ & 72 \\ & 88 \end{aligned}$	$\begin{aligned} & 2046 \\ & 1790 \\ & 1536 \\ & 1280 \end{aligned}$	$\begin{gathered} 71 \\ 84 \\ 96 \\ 108 \end{gathered}$	$\begin{aligned} & 1714 \\ & 1496 \\ & 1278 \\ & 1062 \end{aligned}$	$\begin{gathered} 58 \\ 73 \\ 86 \\ 100 \end{gathered}$	$\begin{aligned} & 2714 \\ & 2370 \\ & 2030 \\ & 1692 \end{aligned}$	$\begin{gathered} 96 \\ 106 \\ 116 \\ 125 \end{gathered}$
AHU 3000	30000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{gathered} 1412 \\ 1234 \\ 1056 \\ 878 \end{gathered}$	$\begin{aligned} & 39 \\ & 55 \\ & 71 \\ & 87 \end{aligned}$	$\begin{aligned} & 2408 \\ & 2110 \\ & 1804 \\ & 1506 \end{aligned}$	$\begin{gathered} 69 \\ 83 \\ 95 \\ 107 \end{gathered}$	$\begin{aligned} & 2014 \\ & 1756 \\ & 1500 \\ & 1248 \end{aligned}$	$\begin{aligned} & 57 \\ & 72 \\ & 85 \\ & 99 \end{aligned}$	$\begin{aligned} & 3206 \\ & 2800 \\ & 2396 \\ & 1996 \end{aligned}$	$\begin{gathered} 94 \\ 105 \\ 115 \\ 124 \end{gathered}$
AHU 3500	35000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1674 \\ & 1464 \\ & 1256 \\ & 1046 \end{aligned}$	$\begin{aligned} & 44 \\ & 58 \\ & 73 \\ & 87 \end{aligned}$	$\begin{aligned} & 2850 \\ & 2496 \\ & 2140 \\ & 1784 \end{aligned}$	$\begin{gathered} 75 \\ 85 \\ 96 \\ 107 \end{gathered}$	$\begin{aligned} & 2386 \\ & 2086 \\ & 1784 \\ & 1488 \end{aligned}$	$\begin{aligned} & 62 \\ & 75 \\ & 88 \\ & 99 \end{aligned}$	$\begin{aligned} & 3792 \\ & 3314 \\ & 2840 \\ & 2370 \end{aligned}$	$\begin{aligned} & 100 \\ & 107 \\ & 114 \\ & 122 \end{aligned}$
AHU 4000	40000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1936 \\ & 1694 \\ & 1456 \\ & 1214 \end{aligned}$	$\begin{aligned} & 40 \\ & 57 \\ & 72 \\ & 88 \end{aligned}$	$\begin{aligned} & 3294 \\ & 2884 \\ & 2478 \\ & 2064 \end{aligned}$	$\begin{gathered} 71 \\ 84 \\ 97 \\ 109 \end{gathered}$	$\begin{aligned} & 2760 \\ & 2418 \\ & 2070 \\ & 1728 \end{aligned}$	$\begin{gathered} 59 \\ 73 \\ 87 \\ 100 \end{gathered}$	$\begin{aligned} & 4378 \\ & 3830 \\ & 3284 \\ & 2746 \end{aligned}$	$\begin{gathered} 97 \\ 107 \\ 117 \\ 126 \end{gathered}$
AHU 4500	45000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2172 \\ & 1900 \\ & 1628 \\ & 1356 \end{aligned}$	$\begin{aligned} & 44 \\ & 59 \\ & 73 \\ & 84 \end{aligned}$	$\begin{aligned} & 3692 \\ & 3232 \\ & 2774 \\ & 2312 \end{aligned}$	$\begin{gathered} 75 \\ 86 \\ 96 \\ 107 \end{gathered}$	$\begin{aligned} & 3094 \\ & 2704 \\ & 2312 \\ & 1926 \end{aligned}$	$\begin{aligned} & 63 \\ & 75 \\ & 87 \\ & 99 \end{aligned}$	$\begin{aligned} & 4902 \\ & 4284 \\ & 3674 \\ & 3064 \end{aligned}$	$\begin{gathered} 88 \\ 107 \\ 115 \\ 122 \end{gathered}$

Note: - Hot water Entering: $180^{\circ} \mathrm{F}$ \& Leaving: $160^{\circ} \mathrm{F}$

- $\operatorname{LVG}=$ Leaving air Temperature.
- EDB $=$ Entering air dry bulb Temperature.
- $\mathrm{MBH}=1000 \mathrm{Btu} / \mathrm{hr}$.

Table 11	Steam Heating Ratings , Multi Zone					
Model	Nominal CFM	EDB$\left({ }^{\circ} \mathrm{F}\right)$	1 Rows		2 Rows	
			Capacity (MBH)	$\underset{\left({ }^{\circ} \mathrm{F}\right)}{\text { LVG DB }}$	Capacity (MBH)	$\begin{aligned} & \text { LVG DB } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$
AHU 250	2500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 165 \\ & 151 \\ & 137 \\ & 122 \end{aligned}$	$\begin{gathered} 61 \\ 75.7 \\ 90.7 \\ 105.1 \end{gathered}$	$\begin{aligned} & 293 \\ & 267 \\ & 243 \\ & 216 \end{aligned}$	$\begin{aligned} & 108.1 \\ & 118.5 \\ & 129.5 \\ & 139.6 \end{aligned}$
AHU 350	3500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 246 \\ & 225 \\ & 204 \\ & 181 \end{aligned}$	$\begin{gathered} 65 \\ 79.5 \\ 93.7 \\ 107.8 \end{gathered}$	$\begin{aligned} & 445 \\ & 406 \\ & 369 \\ & 328 \end{aligned}$	$\begin{aligned} & 117.3 \\ & 127.1 \\ & 137.1 \\ & 146.5 \end{aligned}$
AHU 500	5000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 329 \\ & 300 \\ & 272 \\ & 243 \end{aligned}$	$\begin{gathered} 60.7 \\ 75.4 \\ 90.2 \\ 104.8 \end{gathered}$	$\begin{aligned} & 598 \\ & 545 \\ & 495 \\ & 441 \end{aligned}$	$\begin{aligned} & 110.3 \\ & 120.5 \\ & 131.4 \\ & 141.2 \end{aligned}$
AHU 700	7000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 458 \\ & 417 \\ & 378 \\ & 337 \end{aligned}$	$\begin{gathered} 60.3 \\ 74.9 \\ 89.8 \\ 104.4 \end{gathered}$	$\begin{aligned} & 830 \\ & 757 \\ & 680 \\ & 612 \end{aligned}$	$\begin{aligned} & 109.3 \\ & 119.7 \\ & 129.5 \\ & 140.5 \end{aligned}$
AHU 1000	10000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 653 \\ & 595 \\ & 540 \\ & 481 \end{aligned}$	$\begin{aligned} & 60.2 \\ & 74.9 \\ & 89.8 \\ & 104.3 \end{aligned}$	$\begin{aligned} & 1197 \\ & 1091 \\ & 991 \\ & 882 \end{aligned}$	$\begin{aligned} & 110.4 \\ & 120.6 \\ & 131.4 \\ & 141.3 \end{aligned}$
AHU 1200	12500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 816 \\ & 743 \\ & 675 \\ & 601 \end{aligned}$	$\begin{aligned} & 60.1 \\ & 74.8 \\ & 89.8 \\ & 104.3 \end{aligned}$	$\begin{aligned} & 1496 \\ & 1364 \\ & 1240 \\ & 1102 \end{aligned}$	$\begin{aligned} & 110.3 \\ & 120.6 \\ & 131 . .4 \\ & 141.3 \end{aligned}$
AHU 1500	1500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 983 \\ & 896 \\ & 814 \\ & 724 \end{aligned}$	$\begin{gathered} 60.4 \\ 75 \\ 90 \\ 104.5 \end{gathered}$	$\begin{aligned} & 1796 \\ & 1637 \\ & 1488 \\ & 1323 \end{aligned}$	$\begin{aligned} & 110.3 \\ & 120.5 \\ & 131.4 \\ & 141.3 \end{aligned}$
AHU 1700	17500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1153 \\ & 1051 \\ & 955 \\ & 849 \end{aligned}$	$\begin{gathered} 60 \\ 75 \\ 90 \\ 104 \end{gathered}$	$\begin{aligned} & 2099 \\ & 1913 \\ & 1739 \\ & 1546 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & 131 \\ & 141 \end{aligned}$
AHU 2000	20000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1323 \\ & 1206 \\ & 1096 \\ & 974 \end{aligned}$	$\begin{gathered} 60.9 \\ 75.5 \\ 90.5 \\ 104.9 \end{gathered}$	$\begin{aligned} & 2401 \\ & 2189 \\ & 1989 \\ & 1768 \end{aligned}$	$\begin{aligned} & 110.6 \\ & 120.9 \\ & 131.6 \\ & 141.4 \end{aligned}$
AHU 2200	22500	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1478 \\ & 1347 \\ & 1224 \\ & 1088 \end{aligned}$	$\begin{gathered} 60 \\ 75 \\ 90 \\ 104 \end{gathered}$	$\begin{aligned} & 2698 \\ & 2459 \\ & 2235 \\ & 1987 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & 131 \\ & 141 \end{aligned}$
AHU 2500	25000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1632 \\ & 1488 \\ & 1352 \\ & 1202 \end{aligned}$	$\begin{aligned} & 60.1 \\ & 74.8 \\ & 89.8 \\ & 104.3 \end{aligned}$	$\begin{aligned} & 2994 \\ & 2729 \\ & 2480 \\ & 2205 \end{aligned}$	$\begin{aligned} & 110.3 \\ & 120.6 \\ & 131.4 \\ & 141.3 \end{aligned}$
AHU 3000	30000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 1967 \\ & 1793 \\ & 1629 \\ & 1449 \end{aligned}$	$\begin{gathered} 60.5 \\ 75.1 \\ 90 \\ 104.5 \end{gathered}$	$\begin{aligned} & 3592 \\ & 3275 \\ & 2976 \\ & 2976 \\ & 2646 \end{aligned}$	$\begin{aligned} & 110.3 \\ & 120.6 \\ & 131.4 \\ & 141.3 \end{aligned}$
AHU 3500	35000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2306 \\ & 2102 \\ & 1910 \\ & 1698 \end{aligned}$	$\begin{gathered} 60 \\ 75 \\ 90 \\ 104 \end{gathered}$	$\begin{aligned} & 4198 \\ & 3826 \\ & 3478 \\ & 3092 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \\ & 131 \\ & 141 \end{aligned}$
AHU 4000	40000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2646 \\ & 2412 \\ & 2192 \\ & 1949 \end{aligned}$	$\begin{gathered} 60.9 \\ 75.5 \\ 90.5 \\ 104.9 \end{gathered}$	$\begin{aligned} & 4803 \\ & 4378 \\ & 3978 \\ & 3537 \end{aligned}$	$\begin{aligned} & 110.6 \\ & 120.8 \\ & 131.6 \\ & 141.5 \end{aligned}$
AHU 4500	45000	$\begin{gathered} 0 \\ 20 \\ 40 \\ 60 \end{gathered}$	$\begin{aligned} & 2956 \\ & 2694 \\ & 2448 \\ & 2176 \end{aligned}$	$\begin{gathered} 60.9 \\ 75.5 \\ 90.5 \\ 104.9 \end{gathered}$	$\begin{aligned} & 5396 \\ & 4998 \\ & 4470 \\ & 3974 \end{aligned}$	$\begin{aligned} & 110.6 \\ & 120.8 \\ & 131.6 \\ & 141.5 \end{aligned}$

Note: - Values ratings based on steam of pressure 5PSIG.

- $\mathrm{EDB}=$ Entering air dry bulb temperature.
- $\mathrm{MBH}=1000 \mathrm{BTU} / \mathrm{hr}$.

Table 12				Dimensions Coils \& Filters					
Model	Nominal CFM	Coils					Filters Face Area		
		$\begin{aligned} & \text { No of coil } \\ & \text { No of circuits } \end{aligned}$	Face HGT mm	Face LGT mm	Face Area ft^{2}	$\begin{aligned} & \text { Flat } \\ & \text { Type } \\ & \text { fy }{ }^{2} \text { 2 } \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \substack{\text { Type } \\ \mathrm{ft}^{2}} \end{gathered}$	$\begin{gathered} \mathrm{Z} \\ \substack{\text { Type } \\ \mathrm{ft}^{2}} \end{gathered}$	$\begin{gathered} \hline \text { w } \\ \text { Type } \\ \mathrm{ft}^{2} \end{gathered}$
AHU 250	2500	1×16	600	790	5	5	8.5	10	12
AHU 350	3500	1×22	825	790	7.5	7.5	12	14	18
AHU 500	5000	1×20	750	1240	10	10	17	20	25
AHU 700	7000	1×28	1050	1240	14	14	23	27	34
AHU 1000	10000	1×28	1050	1740	20	20	33	39	50
AHU 1200	12500	2×18	1350	1740					
AHU 1500	15000	2×21	1575	1740	30	30	50	60	75
AHU 1700	17500	2×22	1650	1990					
AHU 2000	20000	2×22	1650	2240	45	45	73	87	117
AHU 2200	22500	2×23	1725	2390					
AHU 2500	25000	4×18	1350	2×1740	50	50	65	85	114
AHU 3000	30000	4×21	1575	2×1740	60	60	75	98	133
AHU 3500	35000	4×22	1650	2×1990					
AHU 4000	40000	4×22	1650	2×2240	80	80	100	130	176
AHU 4500	45000	4×23	1725	2×2390					

FLAT TYPE FILTERS

Table 13	Dampers Dimension				
Model	A	B	BB	H	W
AHU 250	700	200	400	820	1000
AHU 350	800	200	400	920	1100
AHU 500	1000	300	300	1120	1500
AHU 700	1200	400	800	1320	1500
AHU 1000	1300	400	800	1400	2000
AHU 1200	1300	400	800	1600	2000
AHU 1500	1700	500	1000	1900	2000
AHU 1700	1800	500	1000	1900	2250
AHU 2000	2000	500	1000	1980	2400
AHU 2200	2000	500	1000	2180	2400
AHU 2500	2×1250	400	800	1780	3200
AHU 3000	2×1700	500	1000	1780	4000
AHU 3500	2×180	500	1000	1880	4200
AHU 4000	2×1900	500	1000	2000	4500
AHU 4500	2×2000	500	1000	2100	5000

BB is according to 50\% fresh air \& 50\% return air If 100\% fresh air \& 100\% return air is required, dampers size will be according to BB

Water Pressure Reduction in Tubes
(Feet Water)

Table 14												
Model	Water Velocity Feet Per Sec. 1 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.11	0.29	0.53	0.8	1.13	1.44	1.82	2.22	3.04	4	4.95	6.06
AHU 500, 700	0.14	0.36	0.65	0.95	1.35	1.75	2.2	2.7	3.7	4.75	5.9	7.3
AHU 1000, 1200, 1500, 2500, 3000	0.16	0.42	0.75	1.02	1.6	2.08	2.62	3.16	4.38	5.73	7.17	8.85
AHU 1700, 3500	0.17	0.45	0.8	1.2	1.7	2.25	2.8	3.4	4.7	6.2	7.7	9.25
AHU 2000, 4000	0.2	0.49	0.88	1.3	1.85	2.43	3.03	3.67	5.1	6.68	8.36	10.32
AHU 2200, 4500	0.18	0.5	0.9	1.35	1.9	2.5	3.15	3.8	5.3	6.9	8.7	10.7

Cont. Table 14

Model	Water Velocity Feet Per Sec. 2 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.13	0.34	0.62	0.92	1.31	1.7	2.14	2.61	3.58	4.68	5.82	7.12
AHU 500, 700	0.15	0.41	0.75	1.1	1.56	2.04	2.55	3.12	4.3	5.57	6.9	8.54
AHU 1000, 1200, 1500, 2500, 3000	0.18	0.49	0.88	1.29	1.85	2.4	2.95	3.66	5.13	6.7	8.38	10.35
AHU 1700, 3500	0.2	0.53	0.95	1.42	2.01	2.63	3.3	4	5.55	7.25	9.5	11.2
AHU 2000, 4000	0.21	0.57	1.02	1.51	2.05	2.83	3.54	4.28	5.97	7.81	9.78	12.07
AHU 2200, 4500	0.21	0.58	1.05	1.56	2.25	2.95	3.7	4.45	6.2	8.81	10.2	12.06

Cont. Table 14												
Model	Water Velocity Feet Per Sec. 3 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.17	0.45	0.82	1.23	1.74	2.26	2.86	3.52	4.82	6.3	7.85	9.66
AHU 500, 700	0.21	0.55	1	1.48	2.13	2.8	3.48	4.3	5.9	7.7	9.65	11.95
AHU 1000, 1200, 1500, 2500, 3000	0.24	0.67	1.16	1.8	2.54	3.33	4.21	5.15	7.15	9.37	11.7	14.15
AHU 1700, 3500	0.26	0.73	1.3	1.95	2.75	3.6	4.55	5.6	7.8	10.2	12.7	15.75
AHU 2000, 4000	0.28	0.79	1.4	2.07	2.98	3.9	4.93	6.05	8.4	11.05	13.8	16.7
AHU 2200, 4500	0.29	0.85	1.45	2.15	3.1	4.1	5.15	6.3	8.75	11.5	14.4	17.85

Cont Table 14												
Model	Water Velocity Feet Per Sec. 4 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.21	0.56	1.02	1.51	2.17	2.83	3.57	4.42	6.05	7.9	9.92	12.2
AHU 500, 700	0.26	0.7	1.25	1.87	2.7	3.5	4.4	5.45	7.45	9.8	12.25	15.2
AHU 1000, 1200, 1500, 2500, 3000	0.29	0.85	1.51	2.23	3.21	4.22	5.36	6.6	9.15	12	15	18.63
AHU 1700, 3500	0.32	0.93	1.65	2.45	3.5	4.6	5.8	7.2	10	13.1	16.4	20.3
AHU 2000, 4000	0.35	1.01	1.78	2.62	3.81	4.98	6.32	7.76	10.83	14.24	17.83	22.09
AHU 2200, 4500	0.36	1.06	1.85	2.72	3.96	5.22	6.6	8.1	11.3	14.85	18.6	23.1

Table 14												
Model	Water Velocity Feet Per Sec. 6 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.29	0.8	1.44	2.13	3.08	4.03	5.05	6.2	8.54	11.28	14.07	17.35
AHU 500, 700	0.36	0.98	1.8	2.65	3.83	5	6.3	7.77	10.7	14.14	17.78	21.93
AHU 1000, 1200, 1500, 2500, 3000	0.43	1.18	2.19	3.2	4.7	6.11	7.73	8.8	13.21	17.4	22.9	27.04
AHU 1700, 3500	0.48	1.3	2.4	3.5	5.1	7.65	8.4	10.35	14.4	19	24	30
AHU 2000, 4000	0.52	1.39	2.56	3.78	5.53	7.25	9.15	11.26	15.66	20.7	26.11	32.2
AHU 2200, 4500	0.54	1.45	2.7	3.95	5.8	7.6	9.65	11.8	16.5	21.7	27.44	33.75

Cont. Table 14												
Model	Water Velocity Feet Per Sec. 8 Row											
	0.5	1	1.5	2	2.5	3	3.5	4	5	6	7	8
AHU 250, 350	0.38	1.04	1.86	2.73	3.97	5.23	6.53	7.98	11.03	14.65	18.22	22.5
AHU 500, 700	0.46	1.23	2.28	3.41	4.98	6.57	8.22	10.1	13.96	18.48	23.05	28.6
AHU 1000, 1200, 1500, 2500, 3000	0.57	1.51	2.82	4.18	6.1	8	10.1	12.4	17.37	22.81	28.85	35.4
AHU 1700, 3500	0.64	1.64	3.1	4.55	6.65	8.7	11	13.55	18.9	24.9	31.5	38.8
AHU 2000, 4000	0.69	1.78	3.35	4.95	7.25	9.52	12	14.76	20.5	27.16	34.4	42.31
AHU 2200, 4500	0.71	1.85	3.5	5.2	7.65	10	12.7	15.5	21.6	28.6	36.3	44.4

Coil Water Side Pressure Drop Correction Factor Temperature Gradient

| Cont. Table 14 | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average Water Temperature ${ }^{\boldsymbol{\circ} \mathrm{F}}$ | 40 | 50 | 60 | 80 | 100 | 120 | 140 | 150 | 160 | 180 | 200 | 220 |
| Correction Factor | 1.04 | 1 | 0.96 | 0.9 | 0.86 | 0.83 | 0.8 | 0.78 | 0.77 | 0.76 | 0.74 | 0.73 |

-Actual water side PD $=$ PD (Table 5) \times CF (Table 5 cont.)

Drain Pan Trapping

* Right Handed Connection Are Shown

$K=$ MIN. $1 / 2^{\prime \prime}$
$H=1 / 22^{\prime \prime}$ PLUS MAXIMUM
TOTAL STATIC PRESSURE

K= (1" FOR EACH 1" OF MAXIMUM NEGATIVE STATIC PRESSURE)
$J=$ HALF OF H
$L=H+J+$ PIPE DIAMETER + INSULATION

Suggested Coil Connection Details for Steam Coils

Suggested Coil Connection Details for Heating and Cooling Coils

Table 16	Air Filter Pressure Drop (in.w.g)									
Filters	Face Velocity FPM									
	300	350	400	450	500	550	600	650	700	800
Cleanable	0.037	0.050	0.065	0.081	0.099	0.120	0.156	0.182	0.235	0.325

Table 17 Coil Face Velocity										
Fin Per Inch	Rows Deep	Face Velocity FPM								
		300		400		500		600	700	800
		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Dry	Dry
8	1	0.05	0.07	0.07	0.1	0.10	0.14	0.14	0.19	0.22
	2	0.09	0.14	0.15	0.2	0.22	0.29	0.3	0.39	0.48
	3	0.11	0.2	0.16	0.31	0.28	0.44	0.39	0.5	0.62
	4	0.15	0.25	0.24	0.4	0.35	0.58	0.48	0.61	0.77
	6	0.24	0.39	0.34	0.61	0.52	0.85	0.71	0.92	1.15
	8	0.30	0.5	0.47	0.82	0.71	1.05	0.95	1.18	1.46

Cont. Table 17	PD Correction Factor		
	Coil Fpi		
8	10	12	14
1	1.16	1.32	1.45

Note:

In order to determine air-side coil pressure drop for cases where the number of fins per inch are greater than 8 Fpi,
multiply the values by the corresponding correction factor given in the table above.

AIR SIDE PRESSURE REDUCTION ACCESSORIES (IN.W.G)

Table 18 (At 500 FPM Velocity)									
Model	Diffuser	Air Washer		 By pass	Damper	Mixing Box	Electrical	Eliminator	Back Draft Damper
		Class 4	Class 6,8			without Filter	Heater		
250-1200	0.03	0.22	0.4	0.21	0.05	0.06	0.02	0.1	0.2
1500-4500	0.04	0.25	0.45	0.25					

Table 19	350	400	450	500	550	600	700	800
Coil Face Velocity	0.8	0.88	0.94	1.0	1.05	1.11	1.19	1.28
Cooling Coil	0.86	0.92	0.96	1.0	1.03	1.06	1.11	1.15
Heating Coil								

Table $\mathbf{2 0}$	Velocity Correction Factor		
No. Of Rows	Fin Per Inch		
	8	10	12
4	1	1.1	1.19
6	1	1.08	1.15
8	1	1.06	1.1

Note: In order to determine capacity of coils with 10 or 12 Fpi, multiply the capacity Relative to 8 Fpi by the corresponding correction factor given in the table 16.

Table 21	Correction Factor For Ethylene Glycol Mixture		
Water	Freezing Point	Correction Factor For Cooling	
100	0		1
90	10	0	1.02
85	15	-4	1.03
80	20	-6.1	1.05
75	25	-9	1.07
70	30	-12	1.09
65	35	45.6	1.11
60	40	49.4	1.14
55	45	-24	1.17
50	50	29.4	1.2
45	55	36.1	1.23

Flow Rate $=$ GPM * Correction Factor (Table 18)

Table 22	2	5	10	15	20	30	40	50	60
Pressure PSIG	2	1.07	1.14	1.19	1.28	1.35	1.42	1.48	
Correction Factor	0.95	1	1.08						

Table 23	Hot Water Correction Factor			
Entering Water Temperature ${ }^{\circ} \mathrm{F}$	160	180	200	220
Correction Factor	0.75	1	1.25	1.5

Table 24	Chilled Water Correction Factor			
Entering Water Temperature ${ }^{\circ} \mathrm{F}$	42	44	45	46
Correction Factor	1.09	1.04	1	0.97

1. Aluminum Washable

High capacity, low resistance, permanent metal filters, which can be Cleaned in hot water with detergent. They can be used for air cleanliness Required 65-70\% arrestance or as an economical alternate to disposable Type pre - filter of high efficiency filter.

EU Class	2
Arrestance $(\%)$	$65-80$

2. Panel Filter (Disposable)

Heavy duty disposable panel filters giving primary protection to the Conditioned space or protect more expensive secondary filters. They are available in synthetic fiber pleated media consist of continuous Filament fiber glass of progressive density.

EU Class	3	4	5
Arrestance (\%)	$80-90$	$90-95$	-
Dust Spot Efficiency (\%)	$20-25$	$25-40$	$40-60$

3. Bag Filter

When high performance air filtration long service life and high dust Holding capacity required in air handling unit, then extended surface Pocket
 filters are selected. Filters are available in various efficiency depths, And number of pockets. Dust holding capacity is maximized because dirt is Evenly loaded throughout the entire depth of the filter.

EU Class	6	7	8	9
Dust Spot Efficiency $(\%)$	$60-80$	$80-90$	$90-95$	$95-99$

4. Hepa Filters

Hepa filter are used to remove airborne biological contaminants in hospital Critical area. Pharmaceutical processing industries as well as to meet exact Requirements of the laboratories and precision manufacturing and micro Electronic industries. Filters are available in 99.97 or 99.99% efficiency With plywood or galvanized steel casing. Hepa filters are installed on specially Designed knife edge type seal framing system with pressure tight lock to Prevent air by pass.

EU Class	11	12	13	14
Dust Spot Efficiency (\%)	$99.9-99.97$	$99.97-99.99$	$99.99-99.999$	$99.999-99.9995$

Azar Nasim air washers are designed \& manufactured in three basic classes.

Class 4:

A compact \& economical single spray nozzle bank air washer specially designed for effective humidifying and air washing purposes.

Class 6:
A single spray nozzle bank unit for medium capacity applications, the ideal air washer for most types evaporative Cooling \& air washing tasks.

Class 8:

Highly efficient heavy duty units with two spray nozzle banks used whenever the utmost in heat transfer humidification or air cleaning is required.

Casings and water basins are made of galvanized steel sheets. Basins are 300 mm deep for classes $4 \& 6,400 \mathrm{~mm}$ deep for class 8.

Moisture eliminators installed side by side in close proximity of each other preventing the water droplets From entering the fan section. They also present a large surface area against which water droplets \& dust Particles first impinge before ending up in the basin.

Centrifugal spray nozzles, contain no cores, vanes of obstructions of any kind and all inside surface are Smooth. Nozzles have removable caps which can be taken off for cleaning purposes.

Brass flooding nozzles are installed on separate headers extending across the air washer. They deliver a Solid flat stream of water on to the eliminator surface in order to wash off the dust particles \& deposits.

An access door with glass inspection window is available on all models.

Make - up water connection \& an automatic float valve which controls the water level in the basin are Provided.

Quick fill connection to which the fresh water supply may be connected is furnished for rapid filling of the Basin.

Evaporative Cooling Efficiency (E) / Class 4

Table A					
Air Velocity	4.50	475	500	525	50
E	0.594	0.572	0.555	0.536	0.519

Evaporative Cooling Efficiency (E) / Class 6 \& 8

Table B											
P.F	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.0
E	0.60	0.64	0.68	0.72	0.76	0.80	0.84	0.88	0.92	0.95	1.0

Air Washer Performance Factors (P.F)

Model	250		350		500		700		1000		1200	
	C 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8
P.F	0.525	0.815	0.525	0.815	0.548	0.821	0.548	0.821	0.548	0.821	0.548	0.821

Cont. Table C												
Model	1500		1700		2000		2200		2500		3000	
	C. 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8	C 6	C 8
P.F	0.571	0.854	0.571	0.854	0.571	0.854	0.571	0.854	0.548	0.821	0.571	0.854

Cont. Table C						
Model	3500			4000		C
	C 6	C 8	C 6	C 8	C 6	C 8
P.F	0.571	0.854	0.571	0.854	0.571	0.854

Given: Entering air DB temperature $=95^{\circ} \mathrm{F}$
Entering air WB temperature $=63^{\circ} \mathrm{F}$
Sensible cooling load $=85 \mathrm{MBH}$
Design air flow rate $=10000$ CFM
Room DB temperature $=77^{\circ} \mathrm{F}$
Determine the required air washer model,
$Q=1.085 \times C F M \times$ (D.BRoom, $-D . B$ Lvg.)
D.B Lvg. $=$ D.B Room $=77-\frac{85000}{1.085 \times 1000}=69.16 \mathrm{~F}$

Considering the required air flow rate in CFM \& the unit available nominal air flow rate, air handling unit Model AHU-1000 is chosen.
Evaporative cooling efficiency (E) is determined as,
$E=\frac{\text { D.B. Ent - D.B. } \operatorname{Lvg}}{\text { D.B. Ent - W.B. Ent }}=\frac{95-69.16}{95-63}=\mathbf{0 . 8}$
The coil face area for model 1000 is $20 \mathrm{ft}^{2}$ therefore.
F.V $=\frac{10000}{20}=\mathbf{5 0 0} \mathrm{FPM}$

Considering the air velocity \& the values in table (A) the (E) value for Class 4 air washer is equal to 0.555 Which is less than the calculated value therefore Class 4 air washer dose not fulfill the requirement. In This case since the (E) value is known, the (P.F) value from table (B) is determined as being equal to 0.75 Now, considering the unit model AHU-1000, the (P.F) value \& table (C) the (P.F) value for Class 6 air Washer is less than the value calculated therefore; Class 8 washer fulfills therequirement. We also notice that the (P.F) value given is 0.821 , the actual (E) value is 0.856 (Table B) the Lvg. Air DB temperature is given as.
$D B L v g=D B E n t-E \times(D . B E n t-W B E n t)=95-$ $0.821 \times(95-63)=68.7^{\circ} \mathrm{F}$
Therefore, the actual air washer cooling capacity is given as.
$\mathrm{Q}=1.085 \times \mathrm{CFM} \times(\mathrm{D} . \mathrm{BRoom}-\mathrm{DB} \operatorname{Lvg})=1.085 \times$ $10000 \times(77-68.7)=90055 \mathrm{BTU} / \mathrm{hr} . \sim 90 \mathrm{MBH}$ Entering the metric chart with the leaving air DB \& WB temperatures of $68.7^{\circ} \mathrm{F} \& 63^{\circ} \mathrm{F}$ Respectively, the relative humidity of the air is determined to be 73\%.

Note:

Abbreviations Ent \& Lvg. notes air Entering \&
Leaving air washer.

Note:

1. Nozzle head and pump head in feet of water.
2. Roughing in dimensions and specifications.

						Table 26 Engineering Data									
Model	Nominal CFM	Face Area ft^{2}	GPM	Nozzle Head	Pump Head	Weight (Kg)		Dimensions (mm)			Connections (inch)				
						Net.	Oper.	W	H	D	0	S	H	M	Q
AHU 250	2500	5	15	55	59	450	950	1000	1220	1	1	2	$1^{1 / 2}$	3/4	3/4
AHU 350	3500	7	22	55	60	500	1000	1100	1370	1	1	2	$11 / 2$	$3 / 4$	3/4
AHU 500	5000	10	35	55	60	550	1280	1500	1520	1	1	2	$11 / 2$	$3 / 4$	3/4
AHU 700	7000	15	46	55	61	600	1330	1500	1720	1	1	2	2	$3 / 4$	1
AHU 1000	10000	20	62	55	62	720	1700	2000	1800	1	1	$21 / 2$	2	1	1
AHU 1200	12500	25	79	55	62	825	1800	2000	2000	$11 / 2$	$11 / 2$	3	2	1	1
AHU 1500	15000	30	95	55	63	900	1900	2000	2300	$11 / 2$	$11 / 2$	3	3	1	1
AHU 1700	17500	35	101	55	64	980	2100	2250	2300	$11 / 2$	$11 / 2$	3	3	1	1
AHU 2000	20000	40	119	55	64	1050	2300	2400	2380	$11 / 2$	$11 / 2$	$2 * 2^{1 / 2}$	3	1	1
AHU 2200	22500	45	143	55	64	1200	2600	2400	2580	$11 / 2$	$11 / 2$	$2 * 21 / 2$	3	1	1
AHU 2500	25000	50	158	55	62	1650	3600	3200	2180	$2^{*} 11 / 2$	2*11/2	2*3	2*3	1	1
AHU 3000	30000	60	190	55	63	1800	3800	4000	2180	2* $11 / 2$	2*11/2	2*3	2*3	1	1
AHU 3500	35000	70	202	55	64	1960	4200	4200	2280	$2^{*} 11 / 2$	2*11/2	2*3	2*3	1	1
AHU 4000	40000	80	238	55	64	2100	4600	4500	2400	2*11/2	$2 * 11 / 2$	2*3	2*3	1	1
AHU 4500	45000	88	286	55	64	2400	5200	5000	2500	2*11/2	$2 * 11 / 2$	2*3	2*3	1	1

Note:

1. Nozzle head and pump head in feet of water.
2. Roughing in dimensions and specifications.

						Table 27 Engineering Data									
Model	Nominal CFM	Face Area ft^{2}	GPM	Nozzle Head	Pump Head	Weight (Kg)		Dimensions (mm)			Connections (inch)				
						Net.	Oper.	W	H	D	0	S	H	M	Q
AHU 250	2500	5	22	55	59	600	1500	1000	1220	2	2	2	$21 / 2$	3/4	3/4
AHU 350	3500	7	30	55	60	650	1550	1100	1370	2	2	2	$21 / 2$	$3 / 4$	3/4
AHU 500	5000	10	48	55	60	720	2050	1500	1520	2	2	$21 / 2$	$21 / 2$	3/4	1
AHU 700	7000	15	70	55	61	840	2150	1500	1720	2	2	$21 / 2$	2*2	$3 / 4$	1
AHU 1000	10000	20	97	55	62	950	2750	2000	1800	2	2	3	2*2	1	1
AHU 1200	12500	25	119	55	62	1050	2850	2000	2000	2	2	3	2*3	1	1
AHU 1500	15000	30	127	55	63	1200	3000	2000	2300	2	2	4	2*3	1	1
AHU 1700	17500	35	143	55	64	1375	3400	2250	2300	2	2	4	2*3	1	1
AHU 2000	20000	40	158	55	64	1450	3750	2400	2380	2	2	4	2*3	1	1
AHU 2200	22500	45	191	55	64	1650	4300	2400	2580	2	2	4	2*3	1	1
AHU 2500	25000	50	238	55	62	2100	5700	3200	2180	2*2	2*2	2*3	4*3	1	1
AHU 3000	30000	60	254	55	63	2400	6000	4000	2180	2*2	2*2	2*4	4*3	1	1
AHU 3500	35000	70	286	55	64	2750	6800	4200	2280	2*2	2*2	2*4	4*3	1	1
AHU 4000	40000	80	316	55	64	2900	7500	4500	2400	2*2	2*2	2*4	4*3	1	1
AHU 4500	45000	88	382	55	64	3300	8600	5000	2500	2*2	2*2	2*4	4*3	1	1

Note:

1. Nozzle head and pump head in feet of water.
2. Roughing in dimensions and specifications.

Spray Nozzle Humidifier

Table 28	$\begin{array}{c}\text { Header } \\ \text { Model } \\ \text { Size }\end{array}$			
AHU 250	CFM			

Electrical Pan Humidifier

Table 28			
Model	Nominal CFM	Absorbed Moisture	KW
AHU 250	2500	12	4
AHU 350	3500	18	6
AHU 500	5000	24	8
AHU 700	7000	33	10
AHU 1000	10000	49	16
AHU 1250	12500	60	20
AHU 1500	1500	71	24
AHU 1750	17500	83	28
AHU 2000	20000	95	32
AHU 2250	22500	106	36
AHU 2500	25000	120	40
AHU 3000	30000	142	48
AHU 3500	35000	116	56
AHU 4000	40000	190	64
AHU 4500	45000	212	72

Note: - ΔW : Moisture difference between air after \& before humidifier [Grain / Lb. (of dry air)]

- Drain size $=0.5$ inch

| Table 29 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Nominal
 CFM | | | | | |

Note: - Δ W: Moisture difference between air after \& before humidifier [Grain / Lb. (of dry airl]

- Steam humidifier rating at 5 PSI pressure.

Single Zone Horizontal

Air Washer

Table 30 Dampers Dimension															
Model	$\begin{aligned} & \text { AHU } \\ & 250 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 350 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 700 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 1200 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 1500 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 1700 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 2200 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 2500 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 3000 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 3500 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 4000 \end{aligned}$	$\begin{aligned} & \text { AHU } \\ & 4500 \end{aligned}$
A	70	70	80	80	100	100	100	100	120	120	210	210	235	260	275
B	100	100	100	100	100	100	100	100	120	120	210	210	235	260	275
C	110	110	160	160	210	210	210	210	260	275	210	210	235	260	275

Multi - Zone

Note:

- All Dimensions in mm

Enthalpy (BTU / Lb.)

[^0]: Note: - Values based on entering chilled water •
 EDB = Entering air dry bulb temperature

 - LVG = Leaving air temperature
 temperature of $45^{\circ} \mathrm{F}$
 - $\mathrm{EWB}=$ Entering air wet bulb temperature
 - $\mathrm{MBH}=1000 \mathrm{BTU} / \mathrm{hr}$.

